Skip to main content
Log in

Unstable Manifolds of Relative Periodic Orbits in the Symmetry-Reduced State Space of the Kuramoto–Sivashinsky System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Systems such as fluid flows in channels and pipes or the complex Ginzburg–Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armbruster, D., Guckenheimer, J., Holmes, P.: Kuramoto-Sivashinsky dynamics on the center-unstable manifold. SIAM J. Appl. Math. 49, 676–691 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin (1982)

    Google Scholar 

  3. Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets: I. Cycle expansions. Nonlinearity 3, 325–359 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets: II. Applications. Nonlinearity 3, 361–386 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Avila, M., Mellibovsky, F., Roland, N., Hof, B.: Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502 (2013)

    Article  ADS  Google Scholar 

  6. Blackburn, H.M., Marques, F., Lopez, J.M.: Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395–411 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  8. Budanur, N.B.: Exact coherent structures in spatiotemporal chaos: from qualitative description to quantitative predictions. PhD thesis, School of Physics, Georgia Inst. of Technology, Atlanta (2015)

  9. Budanur, N.B., Hof, B.: State space geometry of the laminar-turbulent boundary in pipe flow, in preparation (2017)

  10. Budanur, N.B., Borrero-Echeverry, D., Cvitanović, P.: Periodic orbit analysis of a system with continuous symmetry: a tutorial. Chaos 25, 073112 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Budanur, N.B., Cvitanović, P., Davidchack, R.L., Siminos, E.: Reduction of the SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114, 084102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cartan, E.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés, Vol. 5, Exposés de Géométrie. Hermann, Paris (1935)

    MATH  Google Scholar 

  13. Chossat, P., Lauterbach, R.: Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  14. Christiansen, F., Cvitanović, P., Putkaradze, V.: Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 55–70 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Crawford, J.D., Knobloch, E.: Symmetry and symmetry-breaking bifurcations in uid dynamics. Ann. Rev. Fluid Mech. 23, 341–387 (1991)

    Article  ADS  MATH  Google Scholar 

  16. Cvitanović, P.: Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 2729–2732 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cvitanović, P., Davidchack, R.L., Siminos, E.: On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9, 1–33 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cvitanović, P., Borrero-Echeverry, D., Carroll, K., Robbins, B., Siminos, E.: Cartography of high-dimensional flows: a visual guide to sections and slices. Chaos 22, 047506 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2016)

    Google Scholar 

  20. D’Humieres, D., Beasley, M.R., Huberman, B.A., Libchaber, A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26, 3483–3496 (1982)

    Article  ADS  Google Scholar 

  21. Duguet, Y., Willis, A.P., Kerswell, R.R.: Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255–274 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Farazmand, M.: An adjoint-based approach for finding invariant solutions of Navier-Stokes equations. J. Fluid Mech. 795, 278–312 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Field, M.J.: Equivariant dynamical systems. Trans. Am. Math. Soc. 259, 185–205 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatermann, K.: Computer Algebra Methods for Equivariant Dynamical Systems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  26. Gibson, J.F.: Channel flow: a spectral Navier-Stokes simulator in C++, technical report. University of New Hampshire. www.Channelflow.org (2013)

  27. Gibson, J.F., Halcrow, J., Cvitanović, P.: Visualizing the geometry of state-space in plane Couette flow. J. Fluid Mech. 611, 107–130 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gilmore, R., Letellier, C.: The Symmetry of Chaos. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  29. Greene, J.M., Kim, J.-S.: The steady states of the Kuramoto-Sivashinsky equation. Physica D 33, 99–120 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  ADS  Google Scholar 

  31. Hilbert, D.: Über die vollen Invariantensysteme. Math. Ann. 42, 313–373 (1893)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hindmarsh, A.C.: ODEPACK, a systematized collection of ODE solvers. In: Stepleman, R.S. (ed.) Scientific Computing, vol. 1, pp. 55–64. North-Holland, Amsterdam (1983)

    Google Scholar 

  33. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  34. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 94, 3–22 (1942)

  35. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001)

  36. Kadanoff, L., Tang, C.: Escape rate from strange repellers. Proc. Natl. Acad. Sci. USA 81, 1276–1279 (1984)

    Article  ADS  MATH  Google Scholar 

  37. Kevrekidis, I.G., Nicolaenko, B., Scovel, J.C.: Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math. 50, 760–790 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knobloch, E., Weiss, N.: Bifurcations in a model of double-diffusive convection. Phys. Lett. A 85, 127–130 (1981)

    Article  ADS  Google Scholar 

  39. Krupa, M.: Bifurcations of relative equilibria. SIAM J. Math. Anal. 21, 1453–1486 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  ADS  Google Scholar 

  41. Lan, Y., Cvitanović, P.: Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. Phys. Rev. E 78, 026208 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. Lan, Y., Chandre, C., Cvitanović, P.: Variational method for locating invariant tori. Phys. Rev. E 74, 046206 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  43. Mainieri, R., Cvitanović, P. (ed.): A brief history of chaos. In: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2016)

  44. Marques, F., Lopez, J.M., Blackburn, H.M.: Bifurcations in systems with Z2 spatio-temporal and O(2) spatial symmetry. Physica D 189, 247–276 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Miranda, R., Stone, E.: The proto-Lorenz system. Phys. Lett. A 178, 105–113 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  46. Neimark, J.: On some cases of periodic motions depending on parameters. Dokl. Akad. Nauk SSSR 129, 736–739 (1959). in Russian

    MathSciNet  Google Scholar 

  47. Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89–92 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  48. Novak, S., Frehlich, R.G.: Transition to chaos in the Duffing oscillator. Phys. Rev. A 26, 3660–3663 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  49. Platt, N., Sirovich, L., Fitzmaurice, N.: An investigation of chaotic Kolmogorov flows. Phys. Fluids A 3, 681–696 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Rempel, E.L., Chian, A.C.: Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. Phys. Rev. E 71, 016203 (2005)

    Article  ADS  Google Scholar 

  51. Rempel, E.L., Chian, A.C., Macau, E.E., Rosa, R.R.: Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation. Chaos 14, 545–556 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Rempel, E.L., Chian, A.C., Miranda, R.A.: Chaotic saddles at the onset of intermittent spatiotemporal chaos. Phys. Rev. E 76, 056217 (2007)

    Article  ADS  Google Scholar 

  53. Ruelle, D.: Generalized zeta-functions for Axiom A basic sets. Bull. Am. Math. Soc. 82, 153–156 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Sacker, R.J.: A new approach to the perturbation theory of invariant surfaces. Commun. Pure Appl. Math. 18, 717–732 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schneider, T.M., Eckhardt, B., Yorke, J.: Turbulence, transition, and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502 (2007)

    Article  ADS  Google Scholar 

  57. Siminos, E.: Recurrent spatio-temporal structures in presence of continuous symmetries. PhD thesis, School of Physics, Georgia Institute of Technology, Atlanta (2009)

  58. Siminos, E., Cvitanović, P.: Continuous symmetry reduction and return maps for high-dimensional flows. Physica D 240, 187–198 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Sivashinsky, G.I.: Nonlinear analysis of hydrodynamical instability in laminar ames—I. Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Skufca, J.D., Yorke, J.A., Eckhardt, B.: Edge of Chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101 (2006)

    Article  ADS  Google Scholar 

  61. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  62. Swift, J.W., Wiesenfeld, K.: Suppression of period doubling in symmetric systems. Phys. Rev. Lett. 52, 705–708 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  63. Toh, S., Itano, T.: A periodic-like solution in channel flow. J. Fluid Mech. 481, 67–76 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 73–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  65. Willis, A.P.: Openpipe flow: pipe flow code for incompressible flow, technical report. University of Sheffield. www.Openpipeflow.org (2014)

  66. Willis, A.P., Cvitanović, P., Avila, M.: Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514–540 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Willis, A.P., Short, K.Y., Cvitanović, P.: Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93, 022204 (2016)

    Article  ADS  Google Scholar 

  68. Zammert, S., Eckhardt, B.: Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E 91, 041003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the family of late G. Robinson, Jr. and NSF Grant DMS-1211827. We are grateful to Xiong Ding, Evangelos Siminos, Simon Berman, and Mohammad Farazmand for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Cvitanović.

Appendix: Computational Details

Appendix: Computational Details

Throughout this paper, we used the 16 Fourier mode truncation of Kuramoto–Sivashinsky equation (2), which renders the state space 30-dimensional. Sufficiency of this truncation was demonstrated for \(L=22\) in Ref. [17]. In all our computations, we integrate (12) and its gradient system numerically, using a general purpose adaptive integrator odeint from scipy.integrate [35], which is a wrapper of lsoda from ODEPACK library [32]. Note that (12) is singular if \(\hat{b}_1 = 0\), i.e., whenever the first Fourier mode vanishes. This singularity can be regularized by a time-rescaling if a fixed time step integrator is desired [11].

Transformation of trajectories and tangent vectors to the fully symmetry-reduced state space (17) is applied as post-processing. For a trajectory \(\hat{a}(\tau )\), we simply apply the reflection reducing transformation to obtain the trajectory as \(\tilde{a}(\tau ) = \tilde{a}(\hat{a}(\tau )) \). Velocity field (12) transforms to (17) by acting with the Jacobian matrix

$$\begin{aligned} \tilde{v}(\tilde{a}) = \frac{d \tilde{a}(\hat{a})}{d \hat{a}}\hat{v}(\hat{a}) \,. \end{aligned}$$

Floquet vectors transform to the fully symmetry-reduced state space similarly, however, their computations in the first Fourier mode slice requires some care. Remember that the reflection symmetry remains after the continuous symmetry reduction, and its action is represented by (13). Thus, denoting finite time flow induced by (12) by \({\hat{f}^{\tau }(\hat{a})}\), pre-periodic orbit within the slice satisfies

$$\begin{aligned} \hat{a}_{pp}= \hat{{D}}(\sigma ) {\hat{f}^{{T_{p}}}(\hat{a}_{pp})} \,, \end{aligned}$$

with its linear stability given by the spectrum of the Jacobian matrix

$$\begin{aligned} \hat{J}_{\!_{pp}} = \hat{{D}}(\sigma ) \hat{J}^{{T_{p}}} (\hat{a}_{pp}) \,, \end{aligned}$$

where \(\hat{J}^{{T_{p}}} (\hat{a}_{pp})\) is the Jacobian matrix of the flow function \({\hat{f}^{{T_{p}}}(\hat{a}_{pp})}\). Thus, in order to find the Floquet vectors in fully symmetry-reduced representation, we first find the eigenvectors \(\hat{V}\) of the Jacobian matrix \(\hat{J}_{\!_{pp}}\) and then transform them as \( \tilde{V}(\tilde{a}) = {d \tilde{a}(\hat{a}_{pp})}/{d \hat{a}}\,\hat{V}(\hat{a}) \,. \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budanur, N.B., Cvitanović, P. Unstable Manifolds of Relative Periodic Orbits in the Symmetry-Reduced State Space of the Kuramoto–Sivashinsky System. J Stat Phys 167, 636–655 (2017). https://doi.org/10.1007/s10955-016-1672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1672-z

Keywords

Navigation