Skip to main content
Log in

Local Equilibrium in Inhomogeneous Stochastic Models of Heat Transport

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend the duality of Kipnis et al. (J Stat Phys 27:65–74, 1982) to inhomogeneous lattice gas systems where either the components have different degrees of freedom or the rate of interaction depends on the spatial location. Then the dual process is applied to prove local equilibrium in the hydrodynamic limit for some inhomogeneous high dimensional systems and in the nonequilibrium steady state for one dimensional systems with arbitrary inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anulova, S.V.: Diffusion process with singular characteristics. In: International Symposium on Stochastic Differential Equations, pp. 7–11, Vilnius (1978)

  2. Bálint, P., Gilbert, T., Nándori, P., Szász, D., Tóth, I.P.: On the limiting Markov process of energy exchanges in a rarely interacting ball-piston gas. http://arxiv.org/abs/1510.06408 (2015). Accessed 1 Mar 2016

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  4. Bunimovich, L., Liverani, C., Pellegrinotti, A., Suhov, Y.: Ergodic systems of \(n\) balls in a billiard table. Commun. Math. Phys. 146, 357–396 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cambanis, S., Huang, S., Simons, G.: On the theory of elliptically contoured distributions. J. Multivar. Anal. 11(3), 368–385 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Duality for stochastic models of transport. J. Stat. Phys. 152, 657–697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Carinci, G., Giardinà, C., Redig, F., Sasamoto, T.: Asymmetric stochastic transport models with \({\cal {U}}_{q}({\mathfrak{su}}(1,\,1))\) symmetry. J. Stat. Phys. 163, 239–279 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cherny, A., Shiryaev, A., Yor, M.: Limit behavior of the “horizontal-vertical” random walk and some extension of the Donsker–Prokhorov invariance principle. Theory Probab. Appl. 47(3), 377–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolgopyat, D., Szász, D., Varjú, T.: Recurrence properties of Lorentz gas. Duke Math. J. 142, 241–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Masi, A., Presutti, E.: Probability estimates for symmetric simple exclusion random walks. Ann. Inst. Poincaré 19(1), 71–85 (1983)

    MathSciNet  MATH  Google Scholar 

  11. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  12. Galves, A., Kipnis, C., Marchioro, C., Presutti, E.: Nonequilibrium measures which exhibit a temperature gradient: study of a model. Commun. Math. Phys. 81, 127–147 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gaspard, P., Gilbert, T.: Heat conduction and Fourier’s law by consecutive local mixing and thermalization. Phys. Rev. Lett. 101(2), 020601 (2008)

    Article  ADS  Google Scholar 

  14. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  15. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27, 65–74 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. Klenke, A.: Probability Theory, 2nd edn. Springer, London (2014)

  17. Li, Y., Nándori, P., Young, L.-S.: Local thermal equilibrium for certain stochastic models of heat transport. J. Stat. Phys. 163(1), 61–91 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  19. Opoku, A., Redig, F.: Coupling and hydrodynamic limit for the inclusion process. J. Stat. Phys. 160(3), 532–547 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Portenko, N.I.: Generalized diffusion processes. In: Translations of Mathematical Monographs, vol. 83. American Mathematical Society, Providence (1990)

  21. Ravishankar, K., Young, L.-S.: Local thermodynamic equilibrium for some models of Hamiltonian origin. J. Stat. Phys. 128, 3 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sidoravicius, V., Sznitman, A.-L.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129(2), 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  25. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, New York (1997)

  26. Zessin, H.: The method of moments for random measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 62, 395–409 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am highly indebted to Imre Péter Tóth for raising a question which initiated this research. I am also grateful to Lai-Sang Young for discussions and encouragement. This Project began while I was affiliated with the Courant Institute, New York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Nándori.

Appendix

Appendix

Here, we prove Lemma 6. We will use the notations of Sect. 6. The proof uses similar coupling to the one in the proof of Lemma 5. This will suffice in case of (a), as \(\Vert Z\Vert \) is small and in case of (d), as we only need a weak estimate. However, we need to perform the coupling on a mesoscopic timescale to complete the proof of (b) and (c).

Proof of (d) we prove the following slightly stronger statement.

For every \(\eta >0\) there is \(\varepsilon = \varepsilon (\eta ) >0\) such that if \(\log L - \log \log L< m < \log L + \log \varepsilon \) and L is large enough, then \(\mathcal E_{L,M} < \eta .\)

With some fixed \(C_1,\) we couple \(Z(k),\, k \in [s_0,\, (s_0 + C_1M^2)\wedge s_1]\) to a SSRW \(W(k),\, k \in [s_0,\, (s_0 + C_1M^2) \wedge s_1],\, W(s_0) = Z(s_0).\) We fix \(C_1,\) as we can by Lemma 5, such that \(\mathbb P(s_1 > s_0 + C_1M^2) < \eta /10.\) Second, Lemma 4 implies that by choosing \(C_2 = C_2(C_1)\) large enough,

$$\begin{aligned} \mathbb P\left( \Vert W(k ) - Z( k) \Vert > C_2 M^3 / L^2\,\text {for some}\,k< \left( s_0 + C_1M^2\right) \wedge s_1\right) < \eta /10. \end{aligned}$$

Now let us define

$$\begin{aligned}&\underline{s}_1 = \min \{ k{\text {:}}\, \Vert W(k) \Vert< (1/2 + \zeta ) M\,\text {or}\, \Vert W(k) \Vert> (2 - \zeta ) M \}, \\&\overline{s}_1 = \min \{ k{\text {:}}\, \Vert W(k) \Vert < (1/2 - \zeta ) M\,\text {or}\,\Vert W(k) \Vert > (2 + \zeta ) M \}, \end{aligned}$$

where \(\zeta \) is fixed in such a way that the following events concerning a planar Brownian motion \(\mathcal W\) have probability at least \(1 - \eta /10{\text {:}}\)

  1. (A)

    if \(\Vert \mathcal W (0) \Vert = 1/2 + \zeta \) then \(\mathcal W\) reaches \(B(0,\,1/2- \zeta )\) before reaching \(\mathbb R^2 \setminus B(0,\,2 - \zeta )\) and

  2. (B)

    if \(\Vert \mathcal W (0) \Vert = 2 - \zeta \) then \(\mathcal W\) reaches \(\mathbb R^2 \setminus B(0,\, 2 + \zeta )\) before reaching \(B(0,\, 1/2 + \zeta ).\)

By the fact that \(\log \Vert \mathcal W\Vert \) is martingale and by Donsker’s theorem, we can also assume

$$\begin{aligned} \left| \mathbb P \left( \left\| W \left( \underline{s}_1\right) \right\|< (1/2 + \zeta ) M \right) - 1/2\right| < \eta /10, \end{aligned}$$

possibly by further reducing \(\zeta \) and by choosing L large. Finally, we choose \(\varepsilon = \sqrt{ \zeta / C_2}\) so as \(\zeta M > C_2 M^3 /L^2.\) Lemma 6(d) follows.

Proof of (a) if \(2 \le \Vert Z(k + s_0)\Vert \) for some \(k < L^{13/10} \wedge \underline{\tau }_{3/5},\) then using Lemma 4 we can couple \(Z(k) - Z(k-1)\) to a step of a SSRW \(W(k) - W(k-1)\) with probability \(O(L^{-7/5}).\) Thus the probability

$$\begin{aligned} \mathbb P\left( Z(k) - Z(k-1) = W(k) - W(k-1)\,\text {for all}\, k < L^{13/10},\, 2 \le \left\| Z\left( k + s_0\right) \right\| \right) , \end{aligned}$$

is \(O(L^{-1/10}).\) Now Lemma 6(a) follows from the proof of Lemmas 10 and 11 in [17].

Proof of (b) and (c) the idea of the proof of these cases is borrowed from [9]. First, we fix some positive \(\xi <3/20,\) write \(K= \lfloor L^{\xi } \rfloor \) and consider the process \((Z(s_0+ jK))_{j \ge 1},\) stopped upon reaching \(B(0,\,M/2 - K)\) or \(\mathbb R^{2} \setminus B(0,\, 2M + K).\) Let us denote by \(\bar{s}\) the corresponding stopping time, i.e., \(\bar{s} = sK\) with the smallest s such that \(Z(s_0+ sK)\) is stopped. We will also write \(\mathfrak z = Z(s_0+ jK) - Z(s_0+ (j-1)K)\) and \(\mathfrak x_j = \log \Vert Z(s_0+ jK) \Vert ^2.\) Now we have

$$\begin{aligned} \left\| Z\left( s_0+ (j+1)K\right) \right\| ^2 = \left\| Z\left( s_0+ jK\right) \right\| ^2 + 2\left( Z\left( s_0+ jK\right) ,\, \mathfrak z\right) + \Vert \mathfrak z,\,\mathfrak z \Vert ^2, \end{aligned}$$

and

$$\begin{aligned} \mathfrak x_{j+1} - \mathfrak x_j =\log \left( 1+ \frac{2(Z(s_0+ jK),\,\mathfrak z) +\Vert \mathfrak z,\,\mathfrak z \Vert ^2 }{\Vert Z(s_0+ jK) \Vert ^2} \right) . \end{aligned}$$

By Taylor expansion,

$$\begin{aligned}&\mathfrak x_{j+1} - \mathfrak x_j \\= & {} \frac{2(Z(s_0+ jK),\, \mathfrak z)}{\Vert Z(s_0+ jK) \Vert ^2} + \frac{\Vert \mathfrak z\Vert ^2}{\Vert Z(s_0+ jK) \Vert ^2} -\frac{2(Z(s_0+ jK),\, \mathfrak z)^2}{\Vert Z(s_0+ jK) \Vert ^4} + O\left( L^{3 \xi } M^{-3}\right) \\= & {} I + II + III + O\left( L^{3 \xi } M^{-3}\right) . \end{aligned}$$

As before, we couple \(\mathfrak z\) to a SSRW W(K) by Lemma 4 such that if \(\mathfrak y = \mathfrak z - W(K), \) then for all positive integer n

$$\begin{aligned} \mathbb P ( \Vert \mathfrak y \Vert =k ) = O\left( L^{n\xi -2n} M^n\right) . \end{aligned}$$

If \(\mathcal F_k \) is the filtration generated by \(\tilde{\varvec{Z}}_i (s_0 + l),\,l \le k,\, i=1,\,2,\) then

$$\begin{aligned} \mathbb E ( I) = \mathbb E \left( \frac{ \mathbb E ( {2(Z(s_0+ jK),\, W(K))} | \mathcal F_j )}{\Vert Z(s_0+ jK) \Vert ^2} \right) + \mathbb E \left( \frac{ \mathbb E ( {2(Z(s_0+ jK),\,\mathfrak y)} | \mathcal F_j )}{\Vert Z(s_0+ jK) \Vert ^2} \right) . \end{aligned}$$

Here, the first term is zero by symmetry of the SSRW W,  and the second is estimated by the Cauchy–Schwarz inequality in cases \(1 \le \Vert \mathfrak y \Vert \le 2\) and \(\Vert \mathfrak y \Vert \ge 3.\) We conclude \(\mathbb E (I) = L^{\xi -2}.\) A similar argument shows that

$$\begin{aligned} \mathbb E \left( \Vert \mathfrak z\Vert ^2\right) = K + O\left( M L^{3\xi -2}\right) . \end{aligned}$$
(22)

The above leading term is \(\mathbb E ( \Vert W (K) \Vert ^2) = K,\) which can be easily proved by leveraging the fact that \((W_{(1)}(k) - W_{(1)}(k-1))_{1 \le k \le K}\) and \((W_{(2)}(k) - W_{(2)}(k-1))_{1 \le k \le K}\) are two independent one dimensional SSRW’s, where \(v_{(1)} = ((1/\sqrt{2},\,1/\sqrt{2}),\, v)\) and \(v_{(2)} = ((1/\sqrt{2},\, - 1/\sqrt{2}),\, v).\) Finally,

$$\begin{aligned}&\mathbb E\left( 2\left( Z\left( s_0+ jK\right) ,\,\mathfrak z\right) ^2 | \mathcal F_j\right) \\= & {} \sum _{i,\,j=1}^2 2 Z_{(i)}\left( s_0+ jK\right) Z_{(j)}\left( s_0+ jK\right) \mathbb E \left( \mathfrak z_{(i)} \mathfrak z_{(j)} \right) \\= & {} \sum _{i=1}^2 2 \left( Z_{(i)}\left( s_0+ jK\right) \right) ^2 \mathbb E \left[ \left( W_{(i)}(K)\right) ^2\right] + O\left( M^2 L^{3 \xi -2}\right) \\= & {} \left\| Z\left( s_0+ jK\right) \right\| ^2K + O\left( M^2 L^{3 \xi -2}\right) . \end{aligned}$$

We conclude that

$$\begin{aligned} \mathbb E \left( \left( \mathfrak x_{j+1} - \mathfrak x_j \right) 1_{\bar{s} > jK}\right) = O\left( L^{3 \xi } M^{-3} + L^{\xi -2}\right) . \end{aligned}$$
(23)

Thus

$$\begin{aligned} \mathbb E \left( \mathfrak x_{\min \{ \bar{s}/ K, A/ K \}} \right) = 2m + O\left( A L^{2 \xi } M^{-3} +A_M L^{-2}\right) . \end{aligned}$$
(24)

Recall that we are given some \(\gamma <1.\)

  • In case of Lemma 6(b), let us choose \(A = M^{2+ \frac{1-\gamma }{\gamma }}.\) Assuming, as we can that \(\xi < 1-\gamma \) gives \(A L^{-2}< L^{-\xi }.\) If \(\xi \) is small (say smaller than 1 / 20), then \( A L^{2 \xi } M^{-3}< L^{-\xi }\) holds as well.

  • In case of Lemma 6(c) let us choose \(A =L^2 \log ^{-3/2} L.\) Since both \(1-\gamma \) and \(\xi \) are small, we have \(A L^{2 \xi } M^{-3} +A_M L^{-2} = O(\log ^{-3/2} L).\)

Thus the error term in (24) can be replaced by O(E),  where \(E =L^{-\xi }\) in case of Lemma 6(b) and \(E = \log ^{-3/2} L\) in case of Lemma 6(c). Next, by Lemma 5,

$$\begin{aligned} \mathfrak x_{\min \{ \bar{s}/ K, A/ K \}} = 2 m \pm 2 + O\left( L^{\xi } M^{-1}\right) = 2 m \pm 2 + O\left( L^{-\xi }\right) , \end{aligned}$$
(25)

holds except on a set of probability \(O(\theta ^{A/M^2}).\) On this exceptional set, we bound the left hand side of (25) by \(O(\log M).\) In case of Lemma 6(b), \( \theta ^{A/M^2} \log M\) is superpolynomially small in L. In case of Lemma 6(c), \( \theta ^{A/M^2} \log M< \theta ^{\sqrt{\log L}} \log L= O(\log ^{-3/2} L).\) It follows that

$$\begin{aligned} \mathbb P \left( \left\| Z_{s_0 + \bar{s} K} \right\| \le M/2 - K \right) = \frac{1}{2} - O(E). \end{aligned}$$

Since \(\Vert Z_{s_0 + \bar{s} K} \Vert \le M/2 - K\) implies \(Z(s_1) \in \mathcal C_{m-1},\) we conclude

$$\begin{aligned} \mathbb P \left( Z\left( s_1\right) \in \mathcal C_{m-1}\right) \ge \frac{1}{2} - O(E). \end{aligned}$$

An analogous argument shows

$$\begin{aligned} \mathbb P \left( Z\left( s_1\right) \in \mathcal C_{m+1} \right) \ge \frac{1}{2} - O(E). \end{aligned}$$

Lemma 6(b) and (c) follow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nándori, P. Local Equilibrium in Inhomogeneous Stochastic Models of Heat Transport. J Stat Phys 164, 410–437 (2016). https://doi.org/10.1007/s10955-016-1551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1551-7

Keywords

Navigation