Skip to main content
Log in

Dynamics of Infinite Classical Anharmonic Crystals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an unbounded lattice and at each point of this lattice an anharmonic oscillator, that interacts with its first neighborhoods via a pair potential V and is subjected to a restoring force of potential U. We assume that U and V are even nonnegative polynomials of degree \(2\sigma _1\) and \(2\sigma _2\). We study the time evolution of this system, with a control of the growth in time of the local energy, and we give a nontrivial bound on the velocity of propagation of a perturbation. This is an extension to the case \(\sigma _1 < 2\sigma _2-1\) of some already known results obtained for \(\sigma _1 \ge 2\sigma _2-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To see this, let \(x^n(t)\) be the time evolution of the oscillators inside the cube \(\Lambda _{0,n}\), assuming empty boundary conditions. Then, for any \(\Lambda _{\mu ,k}\subset \Lambda _{0,n}\) and recalling (2.4),

    $$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t} W_{\mu ,k}(x^n(t)) \lesssim \underbrace{W_{\mu ,k}(x^n(t))^{\frac{1}{2}}}_{\text {velocity}} \times \underbrace{W_{\mu ,k+1}(x^n(t))^{\frac{2\sigma _2-1}{2\sigma }}}_{\mathrm {force}}, \end{aligned}$$

    which can be shown to imply - we omit the details - that

    $$\begin{aligned} W_k^n(t) \le W_k^n(0) + C \int _0^t\! W_k^n(s)^{\frac{1}{2} + \frac{2\sigma _2-1}{2\sigma }} \mathrm {d}s, \end{aligned}$$

    where \(W_k^n(t) := \displaystyle \max _{\mu :\Lambda _{\mu ,k}\subset \Lambda _{0,n}} W_{\mu ,k}(x^n(t))\). If \(\frac{1}{2} + \frac{2\sigma _2-1}{2\sigma } \le 1\), i.e., \(\sigma _1\ge 2\sigma _2-1\), the above inequality can be solved globally in time, getting

    $$\begin{aligned} W_k^n(t) \le C(t) W_k^n(0) \le C(t) Q(x) \big [\log (\mathrm {e}+ n)+(2k+1)^d\big ], \end{aligned}$$

    where we used (2.5), hence an a priori bound on \(W_k^n(t)\), weakly depending on the size n of the finite approximation.

  2. More precisely, the Gibbs distribution of the positions is a Gaussian measure with covariance operator \(S^{-1}\), where S is the force matrix of the harmonic interactions. The finiteness of the variance of each \(q_i\) thus depends on the convergence of the integral \(\int _\Gamma \! \Vert \hat{S}(k)^{-1}\Vert \mathrm {d}k\), where \(\hat{S}(k)\) is the Fourier transformation of S and \(\Gamma \) is the first Brillouin zone. As \(\hat{S}(k)\) is an even function, it vanishes at least as fast as \(|k|^2\) as \(k\rightarrow 0\), so that the variance of \(q_i\) diverges in one and two dimensions. Clearly, one could look only at the random variables which are the differences between nearest neighbor oscillators, but it remains the problem of relating this measure to the evolution of the \(q_i\).

References

  1. Bahan, C., Park, Y.M., Yoo, H.J.: Non equilibrium dynamics of infinite particle systems with infinite range interaction. J. Math. Phys. 40, 4337–4358 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Benfatto, G., Marchioro, C., Presutti, E., Pulvirenti, M.: Superstability estimates for anharmonic systems. J. Stat. Phys. 22, 349–362 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Buttà, P., Caglioti, E., Marchioro, C.: On the motion of a charged particle interacting with an infinitely extended system. Commun. Math. Phys. 233, 545–569 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Buttà, P., Caglioti, E., Marchioro, C.: On the violation of Ohm’s law for bounded interactions: a one dimensional system. Commun. Math. Phys. 249, 353–382 (2004)

    Article  ADS  MATH  Google Scholar 

  5. Buttà, P., Manzo, F., Marchioro, C.: A simple Hamiltonian model of runaway particle with singular interaction. Math. Model. Methods. Appl. Sci. 15, 753–766 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buttà, P., Caprino, S., Cavallaro, G., Marchioro, C.: On the dynamics of infinitely many particles with magnetic confinement. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9, 371–395 (2006)

  7. Buttà, P., Caglioti, E., Di Ruzza, S., Marchioro, C.: On the propagation of a perturbation in an anharmonic system. J. Stat. Phys. 127, 313–325 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Buttà, P., Cavallaro, G., Marchioro, C.: Time evolution of two dimensional systems with infinitely many particles mutually interacting via very singular forces. J. Stat. Phys. 147, 412–423 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Buttà, P., Cavallaro, G., Marchioro, C.: Dynamics of infinitely extended hard core systems. Rep. Math. Phys. 72, 369–377 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Buttà, P., Cavallaro, G., Marchioro, C.: Mathematical models of viscous friction. In: Lecture Notes in Mathematics, vol. 2135. Springer, Cham (2015)

  11. Caglioti, E., Marchioro, C.: On the long time behavior of a particle in an infinitely extended system in one dimension. J. Stat. Phys. 106, 663–680 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caglioti, E., Marchioro, C., Pulvirenti, M.: Non-equilibrium dynamics of three-dimensional infinite particle systems. Commun. Math. Phys. 215, 25–43 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of an infinitely extended Vlasov fluid with singular mutual interactions. J. Stat. Phys. 162, 426–456 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cavallaro, G., Marchioro, C., Spitoni, C.: Dynamics of infinitely many particles mutually interacting in three dimensions via a bounded superstable long-range potential. J. Stat. Phys. 120, 367–416 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dobrushin, R.L., Fritz, J.: Non equilibrium dynamics of one-dimensional infinite particle system with hard-core interaction. Commun. Math. Phys. 55, 275–292 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fritz, J., Dobrushin, R.L.: Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Commun. Math. Phys. 57, 67–81 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lanford, O.E., Lebowitz, J.L.: Time evolution and ergodic properties of harmonic systems. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974). Lecture Notes in Physics, vol. 38, pp. 144–177. Springer, Berlin (1975)

  18. Lanford, O.E., Lebowitz, J.L., Lieb, E.: Time evolution of infinite anharmonic systems. J. Stat. Phys. 16, 453–461 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lieb, E., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  20. Marchioro, C., Pellegrinotti, A., Pulvirenti, M., Triolo, L.: Velocity of a perturbation in infinite lattice systems. J. Stat. Phys. 19, 499–510 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. Marchioro, C., Pellegrinotti, A., Pulvirenti, M.: On the dynamics of infinite anharmonic systems. J. Math. Phys. 22, 1740–1745 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Work performed under the auspices of the Italian Ministry of the University (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Buttà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttà, P., Marchioro, C. Dynamics of Infinite Classical Anharmonic Crystals. J Stat Phys 164, 680–692 (2016). https://doi.org/10.1007/s10955-016-1540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1540-x

Keywords

Navigation