Skip to main content
Log in

Resonant Equilibrium Configurations in Quasi-periodic Media: Perturbative Expansions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider 1-D quasi-periodic Frenkel–Kontorova models. We study the existence of equilibria whose frequency (i.e. the inverse of the density of deposited material) is resonant with the frequencies of the substratum. We study perturbation theory for small potential. We show that there are perturbative expansions to all orders for the quasi-periodic equilibria with resonant frequencies. Under very general conditions, we show that there are at least two such perturbative expansions for equilibria for small values of the parameter. We also develop a dynamical interpretation of the equilibria in these quasi-periodic media. We show that equilibria are orbits of a dynamical system which has very unusual properties. We obtain results on the Lyapunov exponents of the dynamical systems, i.e. the phonon gap of the resonant quasi-periodic equilibria. We show that the equilibria can be pinned even if the gap is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun, O.M., Kivshar, Y.S.: The Frenkel-Kontorova model. Texts and Monographs in Physics. Concepts, methods, and applications. Springer, Berli (2004)

    Book  Google Scholar 

  2. Selke, W.: Spatially modulated structures in systems with competing interactions. Phase Transitions and Critical Phenomena, pp. 1–72. Academic Press, London (1992)

    Google Scholar 

  3. Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions. J. Phys. A 45(5), 455203–455224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. 44(6), 3901–3927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blass, T., de la Llave, R.: The analyticity breakdown for Frenkel–Kontorova models in quasi-periodic media: numerical explorations. J. Stat. Phys. 150(6), 1183–1200 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. de la Llave, R., Xifeng, S., Zhang, L.: Resonant equilibrium configurations in quasi-periodic media: KAM theory (2015)

  7. van Erp, T.S., Fasolino, A.: Aubry transition studied by direct evaluation of the modulation functions of infinite incommensurate systems. Europhys. Lett. 59(3), 330–336 (2002)

    Article  ADS  Google Scholar 

  8. van Erp, T.S., Fasolino, A., Janssen, T.: Structural transitions and phonon localization in Frenkel Kontorova models with quasi-periodic potentials. Ferroelectrics 250, 421–424 (2001)

    Article  Google Scholar 

  9. van Erp, T.S., Fasolino, A., Radulescu, O., Janssen, T.: Pinning and phonon localization in Frenkel–Kontorova models on quasiperiodic substrates. Phys. Rev. B 60(9), 6522–6528 (1999)

    Article  ADS  Google Scholar 

  10. Federer, H.: Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24, 351–407 (1974/75)

  11. Lions, P.-L., Souganidis, P.E.: Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math. 56(10), 1501–1524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aliste-Prieto, J.: Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line. Ergod. Theory Dyn. Syst. 30(2), 565–594 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gambaudo, J.-M., Guiraud, P., Petite, S.: Minimal configurations for the Frenkel–Kontorova model on a quasicrystal. Commun. Math. Phys. 265(1), 165–188 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Garibaldi, E., Petite, S., Thieullen, P.: Discrete weak-kam methods for stationary uniquely ergodic setting. preprint, (2013)

  15. Kunze, M., Ortega, R.: Twist mappings with non-periodic angles. Stability and Bifurcation Theory for Non-autonomous Differential Equations. Lecture Notes in Mathematics, pp. 265–300. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Qin, W., Wang, Y.: Invariant Circles and Depinning Transition. (2015)

  17. Axel, F., Aubry, S.: Polarisation and transition by breaking of analyticity in a one-dimensional model for incommensurate structures in an electric field. J. Phys. A 20(14), 4873 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Fox, A.M., de la Llave, R.: Barriers to transport and mixing in volume-preserving maps with nonzero flux. Physica D 295296, 1–10 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. de la Llave, R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9(5), 835–880 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bücker, M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.): Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, vol. 50, Springer, Berlin (2006). Papers from the 4th international conference on automatic differentiation held in Chicago, IL, 20–24 July 2004

  22. Haro, A.: Automatic Differentiation Methods in Computational Dynamical Systems: Invariant Manifolds and Normal Forms. Springer, London (2011)

    Google Scholar 

  23. Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex Variables. Dover Publications Inc., New York (1995). Translated from the French, Reprint of the 1973 edition

  24. Dieudonné, J.: Infinitesimal Calculus. Hermann, Paris (1971). Translated from the French

  25. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 264–379 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Audin, M.: Hamiltonian Systems and Their Integrability, vol. 15, SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, (2008). Translated from the 2001 French original by Anna Pierrehumbert, Translation edited by Donald Babbitt

  27. Holm, D.D.: Geometric Mechanics. Part I. Dynamics and symmetry, 2nd edn. Imperial College Press, London (2011)

    Book  MATH  Google Scholar 

  28. Souriau, J.-M.: Structure of Dynamical Systems. Progress in Mathematics, vo. 149, Birkhäuser Boston Inc, Boston, MA (1997). A symplectic view of physics, Translated from the French by C. H. Cushman-de Vries, Translation edited and with a preface by R. H. Cushman and G. M. Tuynman

  29. Meyer, K.R.: Symmetries and integrals in mechanics. Dynamical Systems: Dynamical Systems: Proceedings of a Symposium Held at the University of Bahia, Salvador, 1971, pp. 259–272. Academic Press, New York (1973)

    Google Scholar 

  30. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Marsden, J.E., Weinstein, A.: Comments on the history, theory, and applications of symplectic reduction. Quantization of Singular Symplectic Quotients. Progress in Mathematics, pp. 1–19. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  32. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995) With a supplementary chapter by Katok and Leonardo Mendoza

  33. Cortez, A.J.: Dynamics of diffeomorphisms of the torus. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of California, Los Angeles (2002)

  34. Casati, G., Proszen, T.: Mixing properties of triangular billiards. Phys. Rev. Lett. 89, 4729 (1999)

    Article  ADS  Google Scholar 

  35. Petrov, N.P., de la Llave, R., Vano, J.A.: Torus maps and the problem of a one-dimensional optical resonator with a quasiperiodically moving wall. Phys. D 180(3–4), 140–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J., Casati, G., Proszen, T.: Nonergodicity and localization of invariant measure for two colliding masses. Phys. Rev. E 89, 042918 (2014)

    Article  ADS  Google Scholar 

  37. de la Llave, R., Haro, A.: Spectral theory and dynamics. (2010) Manuscript

  38. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1992)

  39. Avila, A., Krikorian, R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. (2) 164(3), 911–940 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Aubry, S., MacKay, R.S., Baesens, C.: Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models. Phys. D 56(2–3), 123–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simon, B.: Kotani theory for one-dimensional stochastic Jacobi matrices. Commun. Math. Phys. 89(2), 227–234 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Blass and Mr. A.H. Salahshoor for discussions. R. L. and L. Z. have been supported by DMS-1500943. The hospitality of JLU-GT Joint institute for Theoretical Sciences for the three authors was instrumental in finishing the work. R.L also acknowledges the hospitality of the Chinese Acad. of Sciences and Beijing Normal Univ. X. Su is supported by both National Natural Science Foundation of China (Grant No. 11301513) and “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Llave, R., Su, X. & Zhang, L. Resonant Equilibrium Configurations in Quasi-periodic Media: Perturbative Expansions. J Stat Phys 162, 1522–1538 (2016). https://doi.org/10.1007/s10955-016-1464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1464-5

Keywords

Mathematics Subject Classification

Navigation