Skip to main content
Log in

Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria–Delbrück Evolution Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One of the most popular models for quantitatively understanding the emergence of drug resistance both in bacterial colonies and in malignant tumors was introduced long ago by Luria and Delbrück. Here, individual resistant mutants emerge randomly during the birth events of an exponentially growing sensitive population. A most interesting limit of this process occurs when the population size \(N\) is large and mutation rates are low, but not necessarily small compared to \(1/N\). Here we provide a scaling solution valid in this limit, making contact with the theory of Levy \(\alpha \)-stable distributions, in particular one discussed long ago by Landau. One consequence of this association is that moments of the distribution are highly misleading as far as characterizing typical behavior. A key insight that enables our solution is that working in the fixed population size ensemble is not the same as working in a fixed time ensemble. Some of our results have been presented previously in abbreviated form [12].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angerer, W.P.: An explicit representation of the Luria-Delbrück distribution. J. Math. Biol. 42(2), 145–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antal, T., Krapivsky, P.: Exact solution of a two-type branching process: models of tumor progression. J. Stat. Mech. Theory Exp. 2011(8), P08,018 (2011)

  3. Clayton, E., Doupé, D.P., Klein, A.M., Winton, D.J., Simons, B.D., Jones, P.H.: A single type of progenitor cell maintains normal epidermis. Nature 446(7132), 185–189 (2007)

    Article  ADS  Google Scholar 

  4. Coldman, A.J., Goldie, J.H.: A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol. 69(3), 279–292 (1986)

    Article  MathSciNet  Google Scholar 

  5. Dewanji, A., Luebeck, E.G., Moolgavkar, S.H.: A generalized Luria-Delbrück model. Math. Biosci. 197(2), 140–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diaz Jr, L.A., Willians, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., Allen, B., Bozic, I., Reiter, J.G., Nowak, M.A., Kinzler, K.W., Oliner, K.S., Vogelstein, B.: The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404), 537–540 (2012)

    ADS  Google Scholar 

  7. Gentle, J.E.: Random-number generation and Monte Carlo methods. Springer (2003)

  8. Gerrish, P.: A simple formula for obtaining markedly improved mutation rate estimates. Genetics 180(3), 1773–1778 (2008)

    Article  Google Scholar 

  9. Iwasa, Y., Nowak, M.A., Michor, F.: Evolution of resistance during clonal expansion. Genetics 172(4), 2557–2566 (2006)

    Article  MathSciNet  Google Scholar 

  10. Kashdan, E., Pareschi, L.: Mean field mutation dynamics and the continuous Luria-Delbrück distribution. Math. Biosci. 240(2), 223–230 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kepler, T.B., Oprea, M.: Improved inference of mutation rates: 1. An integral representation for the Luria-Delbrück distribution. Theor. Pop Biol. 59(1), 41–48 (2001)

    Article  MATH  Google Scholar 

  12. Kessler, D.A., Levine, H.: Large population solution of the stochastic Luria-Delbrück evolution model. Proc. Natl Acad. Sci. 110(29), 11682–11687 (2013)

  13. Kessler, D.A., Levine, H., Austin, R.H.: Resistance to chemotherapy: patient variability and cellular heterogeneity. Cancer Res. 74, 4663–4670 (2014)

    Article  Google Scholar 

  14. Komarova, N.: Stochastic modeling of drug resistance in cancer. J. Theor. Biol. 239(3), 351–366 (2006)

    Article  MathSciNet  Google Scholar 

  15. Landau, L.: On the energy loss of fast particles by ionization. J. Phys. (USSR) 8, 201–205 (1944)

    Google Scholar 

  16. Lea, D.E., Coulson, C.A.: The distribution of the numbers of mutants in bacterial populations. J. Genet. 49(3), 264–285 (1949)

    Article  Google Scholar 

  17. Lenski, R.E., Slatkin, M., Ayala, F.J.: Mutation and selection in bacterial populations: alternatives to the hypothesis of directed mutation. Proc. Natl Acad. Sci. 86(8), 2775–2778 (1989)

    Article  ADS  Google Scholar 

  18. Luria, S.E., Delbrück, M.: Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28(6), 491–511 (1943)

    Google Scholar 

  19. Mandelbrot, B.: A population birth-and-mutation process, I: explicit distributions for the number of mutants in an old culture of bacteria. J. Appl. Prob. 11(3), 437–444 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Moolgavkar, S.H.: Carcinogenesis modeling: from molecular biology to epidemiology. Annu. Rev. Publ. Health 7(1), 151–169 (1986)

    Article  Google Scholar 

  21. Tomasetti, C., Levy, D.: An elementary approach to modeling drug resistance in cancer. Math. Biosci. Eng. 7(4), 905–918 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wagle, N., Emery, C., Berger, M.F., Davis, M.J., Sawyer, A., Pochanard, P., Kehoe, S.M., Johannessen, C.M., MacConaill, L.E., Hahn, W.C., Meyerson, M., Garraway, L.A.: Dissecting therapeutic resistance to raf inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29(22), 3085–3096 (2011)

    Article  Google Scholar 

  23. Zheng, Q.: Progress of a half-century in the study of the Luria-Delbrück distribution. Math. Biosci. 162(1), 1–32 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF Center for Theoretical Biological Physics, (Grant No. PHY-1308264). H.L. was also supported by CPRIT Scholar program of the State of Texas, and D.K. was also supported by the Israeli Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kessler.

Appendix: Recovering \(P_N(m)\) from the Generating Function

Appendix: Recovering \(P_N(m)\) from the Generating Function

The methodology we have adopted yields directly the generating function \(P_N(x)\) and to retrieve \(P_N(m)\) we need to perform a contour integral in the complex plane, as in Eq. (15) for the symmetric pure-birth case, which generalizes (see Eq. (28)) to

$$\begin{aligned} P_N(m) = \frac{1}{2\pi i} \oint \frac{dz}{z^{m+1}} \exp \left( -\mu N(1-z) \,{}_2F_1\!\left( 1,1;1+r;z\right) \right) . \end{aligned}$$
(110)

in the general asymmetric pure-birth case. The integrand has a branch cut, which we can place on the ray \(z>1\). The contour circles the origin. It is convenient to deform the contour, expanding it outward except where it is “pinched” by the branch cut. The resulting contour is given by \(z(t)=\lim _{\epsilon \rightarrow 0} 1 + t -\epsilon + i\epsilon \tanh t\), \(-\infty <t<\infty \) plus vanishing contributions from infinity. Thus in the limit the integral reduces to the discontinuity of the integrand along the branch cut:

$$\begin{aligned} P_N(m) = \frac{1}{2\pi i} \int _0^\infty \frac{dt}{(1+t)^{m+1}}\,\text {Disc}\left[ \exp \left( \mu Nt \,{}_2F_1\!\left( 1,1;1+r;1+t\right) \right) \right] . \end{aligned}$$
(111)

Using standard identities involving hypergeometric functions, we have

$$\begin{aligned} - t\,{}_2F_1(1,1;1+r;1+t)&= \frac{r}{r-1}\left( \frac{t}{1+t}\right) {}_2F_1\!\left( 1,1-r;2-r;\frac{t}{1+t}\right) \nonumber \\&\quad {} + \frac{\pi r}{\sin \pi r}\left( \frac{-t}{1+t}\right) ^r{}_2F_1\!\left( r,0;r;\frac{t}{1+t}\right) \nonumber \\&= -\frac{r}{r-1}\left( \frac{t}{1+t}\right) {}_2F_1\!\left( 1,1-r;2-r;\frac{t}{1+t}\right) \nonumber \\&\quad {} + \frac{\pi r}{\sin \pi r}\left( \frac{-t}{1+t}\right) ^r. \end{aligned}$$
(112)

As the argument of the hypergeometric function on the right hand side lies between 0 and 1, it is continuous across the real axis. The only discontinuity then arises from the factor \((-t/(1+t))^r\) in the second term. This factor takes the values

$$\begin{aligned} \lim _{\epsilon \rightarrow 0^+}\left. \left( \frac{-t}{1+t}\right) ^{r}\right| _{t\pm i\epsilon } = \left( \frac{t}{1+t}\right) ^{r} e^{\mp ir\pi } \end{aligned}$$
(113)

Thus, we obtain

$$\begin{aligned} P_N(m)&= \frac{1}{\pi } \int _0^\infty \frac{dt}{(1+t)^{m+1}}\,\exp \left( \mu N\frac{rt}{(r-1)(1+t)} \,{}_2F_1\!\left( 1,1-r;2-r;\frac{t}{1+t}\right) \right) \nonumber \\&\times \exp \left( -\mu N\frac{\pi r}{\tan \pi r}\left( \frac{t}{1+t}\right) ^r\right) \sin \left( \mu N\pi r\left( \frac{t}{1+t}\right) ^r\right) . \end{aligned}$$
(114)

The calculation of Eq. (48) follows along the same lines.

For \(r\rightarrow 1\), since

$$\begin{aligned} \lim _{r\rightarrow 1} \frac{r}{r-1}\left( \frac{t}{1+t}\right) {}_2F_1\!\left( 1,1-r;2-r;\frac{t}{1+t}\right) = \frac{t}{1+t}\left[ \frac{1}{r-1} + 1 + \ln \frac{1}{1+t}\right] \nonumber \\ \end{aligned}$$
(115)

and

$$\begin{aligned} \lim _{r\rightarrow 1} \frac{\pi r}{\tan \pi r} \left( \frac{t}{1+t}\right) ^r = \frac{t}{1+t}\left[ \frac{1}{r-1}+1+\ln \frac{t}{1+t}\right] \end{aligned}$$
(116)

we have in this case

$$\begin{aligned} P_N(m)&= \frac{1}{\pi } \int _0^\infty \frac{dt}{(1+t)^{m+1}}\,\exp \left( -\mu N \frac{t}{1+t}\ln t\right) \sin \left( \mu N \pi \frac{t}{1+t}\right) \nonumber \\&= \frac{1}{\pi } \int _0^\infty \frac{dt}{(1+t)^{m+1}}\,t^{-\mu Nt/(1+t)}\sin \left( \mu N \pi \frac{t}{1+t}\right) \end{aligned}$$
(117)

This of course also be obtained directly from Eq. (15) via similar methods, where there we label the distribution \(P(m|N)\) since in the death case \(N\) is itself a random variable being conditioned upon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessler, D.A., Levine, H. Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria–Delbrück Evolution Process. J Stat Phys 158, 783–805 (2015). https://doi.org/10.1007/s10955-014-1143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1143-3

Keywords

Navigation