Skip to main content
Log in

Evolution of the Distribution of Wealth in an Economic Environment Driven by Local Nash Equilibria

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present and analyze a model for the evolution of the wealth distribution within a heterogeneous economic environment. The model considers a system of rational agents interacting in a game theoretical framework, through fairly general assumptions on the cost function. This evolution drives the dynamic of the agents in both wealth and economic configuration variables. We consider a regime of scale separation where the large scale dynamics is given by a hydrodynamic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse gamma distribution as an equilibrium in the particular case of quadratic cost functions which has been previously considered in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumann, R.: Existence of competitive equilibria in markets with a continuum of traders. Econometrica 32, 39–50 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bachelier, L.: Théorie de la spéculation. Ann. Sci. Éc. Norm. Super. 3, 21–86 (1900)

    MathSciNet  Google Scholar 

  3. Benaïm, M., Rossignol, R.: A modified Poincaré inequality and its application to First Passage Percolation (2006). Preprint. arXiv:math/0602496

  4. Benaïm, M., Rossignol, R.: Exponential concentration for first passage percolation through modified Poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 44, 544–573 (2008)

    Article  ADS  MATH  Google Scholar 

  5. Blanchet, A., Carlier, G.: Optimal transport and Cournot-Nash equilibria (2012). Preprint. arXiv:1206.6571

  6. Blanchet, A., Mossay, P., Santambrogio, F.: Exsitence and uniqueness of equilibrium for a spatial model of social interactions (2012). Preprint

  7. Bouchaud, J.-P., Mézard, M.: Wealth condensation in a simple model of economy. Physica A 282, 536–545 (2000)

    Article  ADS  Google Scholar 

  8. Cardaliaguet, P.: Notes on Mean Field Games (from P.-L. Lions’ lectures at Collège de France) (2012)

  9. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A.: Econophysics and Sociophysics: Trends and Perspectives. Wiley, Berlin (2006)

    Book  Google Scholar 

  10. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120, 253–277 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Corneo, G., Jeanne, O.: Status, the distribution of wealth, and growth. Scand. J. Econ. 103, 283–293 (2001)

    Article  Google Scholar 

  12. Degond, P., Liu, J.-G., Ringhofer, C.: Large-scale dynamics of mean-field games driven by local Nash equilibria. J. Nonlinear Sci. (2013, to appear). doi:10.1007/s00332-013-9185-2

  13. Düring, B., Toscani, G.: Hydrodynamics from kinetic models of conservative economies. Physica A 384, 493–506 (2007)

    Article  ADS  Google Scholar 

  14. Edgeworth, F.Y.: Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. Kegan Paul, London (1881)

    Google Scholar 

  15. Fershtman, C., Weiss, Y.: Social status, culture and economic performance. Econ. J. (Lond.) 103, 946–959 (1993)

    Google Scholar 

  16. Galor, O., Zeira, J.: Income distribution and macroeconomics. Rev. Econ. Stud. 60, 35–52 (1993)

    Article  MATH  Google Scholar 

  17. Garip, F.: The impact of migration and remittances on wealth accumulation and distribution in rural Thailand. Report, Department of Sociology, Harvard University, USA

  18. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ledoux, M.: Deviation inequalities on largest eigenvalues. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1910, pp. 167–219. Springer, Berlin (2007)

    Chapter  Google Scholar 

  20. Maldarella, D., Pareschi, L.: Kinetic models for socio-economic dynamics of speculative markets. Physica A 391, 715–730 (2012)

    Article  ADS  Google Scholar 

  21. Mas-Colell, A.: On a theorem of Schmeidler. J. Math. Econ. 13, 201–206 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mckenzie, D., Rapoport, H.: Network effects and the dynamics of migration and inequality: theory and evidence from Mexico. J. Dev. Econ. 84, 1–24 (2007)

    Article  Google Scholar 

  23. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Birkhauser, Boston (2010)

    MATH  Google Scholar 

  25. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Øksendal, B.: Stochastic Differential Equations, An Introduction with Applications, 5th edn. Springer, Berlin (2010)

    Google Scholar 

  27. Pareto, V.: La Courbe de la Repartition de la Richesse (Originally published in 1896). In: Busino, G. (ed.) Oeuvres Complètes de Vilfredo Pareto, pp. 1–5. Droz, Geneva (1965)

    Google Scholar 

  28. Robson, A.J.: Status, the distribution of wealth, private and social attitudes to risk. Econometrica 60, 837–857 (1992)

    Article  MATH  Google Scholar 

  29. Schmeidler, D.: Equilibrium points of nonatomic games. J. Stat. Phys. 7, 295–300 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Shapiro, N.Z., Shapley, L.S.: Values of large games. I: A limit theorem. Math. Oper. Res. 3, 1–9 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Silver, J., Slud, E., Takamoto, K.: Statistical equilibrium wealth distributions in an exchange economy with stochastic preferences. J. Econ. Theory 106, 417–435 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Takayasu, H.: Application of Econophysics. Springer, Tokyo (2004)

    Book  Google Scholar 

  33. Takayasu, H.: Practical Fruits of Econophysics. Springer, Tokyo (2005)

    Google Scholar 

  34. Toscani, G., Brugna, C., Demichelis, S.: Kinetic models for the trading of goods. J. Stat. Phys. 151, 549–566 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Weiss, Y., Fershtman, C.: Social status and economic performance: a survey. Eur. Econ. Rev. 42, 801–820 (1998)

    Article  Google Scholar 

  36. Yakovenko, V.M., Rosser, J.B. Jr.: Colloquium: statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 81, 1703–1725 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by KI-Net NSF RNMS grant No. 1107291. J.-G. Liu and C. Ringhofer are greatful for the opportunity to stay and work at the Institut de Mathématiques de Toulouse in fall 2012, under the sponsorship of Centre National de la Recherche Scientifique and University Paul–Sabatier. The authors wish to thank A. Blanchet from University Toulouse 1 Capitole for enlighting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Degond.

Appendices

Appendix A: Proof of Lemma 3.5

(i) Introducing the change of variables (3.17) into (3.15) and using Green’s formula, we find (3.16). Green’s formula is applicable and the boundary terms disappear because of the assumptions of smoothness made on f and g.

(ii) We just let σ=φ in (3.16).

(iii) Taking σ=Constant in (3.16), the left-hand side vanishes. Therefore, if (3.18) is not satisfied, there cannot exist a solution. Supposing now that (3.18) is satisfied, we can restrict the set of test functions σ to \({\mathcal{H}}_{\varXi0}\) in the weak formulation (3.16). Indeed, from \(\sigma \in{\mathcal{H}}_{\varXi0}\), we can construct an arbitrary test function in \({\mathcal{H}}_{\varXi}\) by simply adding a constant. But, because (3.18) is satisfied, the weak formulation (3.16) is still true for this test function. Now, because of the assumed Poincaré inequality (3.14), the left-hand side of (3.16) is a coercive bilinear form on \({\mathcal{H}}_{\varXi0}\) while, because of the assumption that \(\psi\in{\mathcal{X}}_{\varXi}\), the right-hand side is a continuous linear form on \({\mathcal{H}}_{\varXi0}\). Therefore, Lax-Milgram’s theorem applies and there exists a unique solution \(\varphi\in{\mathcal{H}}_{\varXi0}\) to problem (3.16). The most general solution is of the form φ+Constant because of point (ii). This ends the proof.

Appendix B: Proof of Lemma 3.13

Let v: \(z \in{\mathbb{R}}_{+} \mapsto v(z) \in{\mathbb{R}}\) such that

$$\begin{aligned} & \int_0^\infty\bigl(|v(z)|^2 + | \partial_z v(z)|^2\bigr) \gamma_{\alpha,\beta }(z) dz < \infty, \end{aligned}$$
(B.1)

where γ α,β (z) is the gamma distribution defined at (3.37). Then, formula (10) of [3] states that there exists a constant C α,β >0 such that

$$\begin{aligned} & \int_0^\infty|v(z) - \bar{v}|^2 \gamma_{\alpha,\beta}(z) dz \leq C_{\alpha,\beta} \int_0^\infty| \partial_z v(z)|^2 \gamma_{\alpha ,\beta}(z) dz, \end{aligned}$$
(B.2)

where

$$\begin{aligned} & \bar{v} = \int_0^\infty v(z) \gamma_{\alpha,\beta}(z) dz. \end{aligned}$$
(B.3)

Then, we make the change of variables z=1/y in (B.1), (B.2), (B.3). We denote by u(y)=v(z) and use (3.38). We remark that z v(z)=−y 2 y u(y). Therefore, we have, denoting by C α,β generic constants only depending only on α and β:

$$\begin{aligned} \int_0^\infty|u(y)|^2 g_{\alpha,\beta}(y) \frac{dy}{y^2} =& \int_0^\infty|v(z)|^2 z^2 \gamma_{\alpha,\beta}(z) dz \\ =& C_{\alpha,\beta} \int_0^\infty|v(z)|^2 \gamma_{\alpha+2,\beta }(z) dz, \end{aligned}$$

and

$$\begin{aligned} \int_0^\infty|y^2 \partial_y u (y)|^2 g_{\alpha,\beta}(y) \frac{dy}{y^2} =& \int_0^\infty| \partial_z v (z)|^2 z^2 \gamma _{\alpha,\beta}(z) dz \\ =& C_{\alpha,\beta} \int_0^\infty| \partial_z v (z)|^2 \gamma _{\alpha+2,\beta}(z) dz, \end{aligned}$$

and finally,

$$\begin{aligned} \bar{u} = \int_0^\infty u (y) g_{\alpha,\beta}(y) \frac{dy}{y^2} =& \int_0^\infty v (z) z^2 \gamma_{\alpha,\beta}(z) dz \\ =& C_{\alpha,\beta} \int_0^\infty v (z) \gamma_{\alpha+2,\beta}(z) dz. \end{aligned}$$

Now, letting \((\alpha,\beta) = (\frac{\kappa+d}{d}, \frac{\kappa \varUpsilon}{d})\), we notice that v satisfies (B.1) (with α shifted to α+2) if and only if \(u \in{\mathcal{H}}_{\varUpsilon}\). Furthermore, \(\bar{v} = 0\) if and only if \(u \in{\mathcal{H}}_{\varUpsilon0}\). Now, the Poincaré inequality (B.2) (with α shifted to α+2) leads to (3.14).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degond, P., Liu, JG. & Ringhofer, C. Evolution of the Distribution of Wealth in an Economic Environment Driven by Local Nash Equilibria. J Stat Phys 154, 751–780 (2014). https://doi.org/10.1007/s10955-013-0888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0888-4

Keywords

Navigation