Skip to main content
Log in

Error Covariance Matrix Estimation of Noisy and Dynamically Coupled Time Series

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We estimate the covariance matrix of the errors in several dynamically coupled time series corrupted by measurement errors. We say that several scalar time series are dynamically coupled if they record the values of measurements of the state variables of the same smooth dynamical system. The estimation of the covariance matrix of the errors is made using a noise reduction algorithm that efficiently exploits the information contained jointly in the dynamically coupled noisy time series. The method is particularly powerful for short length time series with high uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buonaccorsi, J.P.: Measurement Error Models, Methods, and Applications. Chapman & Hall/CRC, Boca Raton (2010)

    Book  MATH  Google Scholar 

  2. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1997)

    Google Scholar 

  4. Molkov, Y.I., Mukhin, D.N., Loskutov, E.M., Feigin, A.M.: Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev. E 80, 046207 (2009)

    Article  ADS  Google Scholar 

  5. Diks, C.: Nonlinear Time Series Analysis. Methods and Applications. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  6. Smith, R.L.: Estimating dimension in noisy chaotic time series. J. R. Stat. Soc. B 54, 329–351 (1992)

    MATH  Google Scholar 

  7. Schreiber, T.: Determination of the noise level of chaotic time series. Phys. Rev. E 48, R13–R16 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  8. Schouten, J.C., Takens, F., van den Bleek, C.M.: Estimation of the dimension of a noisy attractor. Phys. Rev. E 50(3), 1851 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  9. Diks, C.: Estimating invariants of noisy attractors. Phys. Rev. E 53, R4263–R4266 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  10. Schreiber, T.: Influence of Gaussian noise on the correlation exponent. Phys. Rev. E 56(1), 274–277 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  11. Oltmans, H., Verheijen, P.J.T.: Influence of noise on power-law scaling functions and an algorithm for dimension estimations. Phys. Rev. E 56(1), 1160–1170 (1997)

    Article  ADS  Google Scholar 

  12. Kugiumtzis, D.: Correction of the correlation dimension for noisy time series. Int. J. Bifurc. Chaos 7(6), 1283–1294 (1997)

    Article  MATH  Google Scholar 

  13. Galka, A.: Topics in Nonlinear Time Series Analysis with Implications for EEC Analysis. World Scientific, Singapore (2000)

    Book  Google Scholar 

  14. Yu, D., Small, M., Harrison, R.G., Diks, C.: Efficient implementation of the gaussian kernel algorithm in estimating invariants and noise level from noisy time series data. Phys. Rev. E 61(4), 3750–3756 (2000)

    Article  ADS  Google Scholar 

  15. Leontitsis, A., Pange, J., Bountis, T.: Large noise level estimation. Int. J. Bifurc. Chaos 13(8), 2309–2313 (2003)

    Article  MATH  Google Scholar 

  16. Urbanowicz, K., Holyst, J.A.: Noise-level estimation of time series using coarse-grained entropy. Phys. Rev. E 67, 046218 (2003)

    Article  ADS  Google Scholar 

  17. Kaminski, T., Wendeker, M., Urbanowicz, K., Litak, G.: Combustion process in a spark ignition engine: dynamics and noise level estimation. Chaos 14(2), 461 (2004)

    Article  ADS  Google Scholar 

  18. Strumik, M., Macek, W.M., Redaelli, S.: Discriminating additive from dynamical noise for chaotic time series. Phys. Rev. E 72, 036219 (2005)

    Article  ADS  Google Scholar 

  19. Leontitsis, A.: Red noise estimation. Int. J. Bifurc. Chaos 16(7), 2111–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jayawardena, A.W., Xu, P., Li, W.K.: A method of estimating the noise level in a chaotic time series. Chaos 18, 023115 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Cawley, R., Hsu, G.-H.: Local-geometric-projection method for noise reduction in chaotic maps and flows. Phys. Rev. A 46(6), 3057–3082 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  22. Urbanowicz, K., Holyst, J.A.: Noise reduction in chaotic time series by a local projection with nonlinear constraints. Acta Phys. Pol. B 35(9), 2175–2197 (2004)

    MathSciNet  ADS  Google Scholar 

  23. Cellucci, C.J., Albano, A.M., Rapp, P.E., Pittenger, R.A., Josiassen, R.C.: Detecting noise in a time series. Chaos 7(3), 414–422 (1997)

    Article  ADS  MATH  Google Scholar 

  24. Hu, J., Gao, J.B., White, K.D.: Estimating measurement noise in a time series by exploiting nonstationarity. Chaos Solitons Fractals 22, 807–819 (2004)

    Article  ADS  MATH  Google Scholar 

  25. Heald, J.P.M., Stark, J.: Estimation of noise levels for models of chaotic dynamical systems. Phys. Rev. Lett. 84(11), 2366–2369 (2000)

    Article  ADS  Google Scholar 

  26. Jones, A.J., Evans, D., Kemp, S.E.: A note on the Gamma test analysis of noisy input/output data and noisy time series. Physica D 229, 1–8 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Urbanowicz, K., Holyst, J.A.: Noise estimation by use of neighboring distances in takens space and its applications to stock market data. Int. J. Bifurc. Chaos 16(6), 1865–1869 (2006)

    Article  MATH  Google Scholar 

  28. Tanaka, N., Okamoto, H., Naito, M.: Estimating the amplitude of measurement noise present in chaotic time series. Chaos 9(2), 436–444 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Soofi, A.S., Cao, L. (eds.): Modeling and Forecasting Financial Data. Kluwer Academic, Boston (2002)

    Google Scholar 

  30. Fuller, W.A.: Measurement Error Models. Wiley Series in Probability and Statistics. Wiley, New York (2006)

    MATH  Google Scholar 

  31. Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold, London (1999)

    MATH  Google Scholar 

  32. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models. A Modern Perspective. Chapman & Hall/CRC, New York (2006)

    Book  MATH  Google Scholar 

  33. Mera, M.E., Morán, M.: Geometric noise reduction for multivariate time series. Chaos 16, 013116 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. Mera, M.E., Morán, M.: Reduction of noise of large amplitude through adaptive neighborhoods. Phys. Rev. E 80, 016207 (2009)

    Article  ADS  Google Scholar 

  35. Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., Schreiber, T.: On noise reduction methods for chaotic data. Chaos 3(2), 127–141 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Kostelich, E.J., Schreiber, T.: Noise reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E 48, 1752–1763 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  37. Davies, M.: Noise reduction schemes for chaotic time series. Physica D 79, 174–192 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  38. Mera, M.E., Morán, M.: Noise reduction by recycling dynamically coupled time series. Chaos 21, 043110 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  39. Netoff, T.I., Carroll, T.L., Pecora, L.M., Schiff, S.J.: Detecting coupling in the presence of noise and nonlinearity. In: Scheler, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis, pp. 265–282. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  40. Takens, F.: Dynamical systems and turbulence. In: Rang, D.A., Young, L.-S. (eds.) Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  41. Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Kern, A., Steeb, W.-H., Stoop, R.: Projective noise cleaning with dynamic neighborhood selection. Int. J. Mod. Phys. C 11(1), 125–146 (2000)

    Article  ADS  Google Scholar 

  43. Matassini, L., Kantz, H., Holyst, J., Hegger, R.: Optimizing of recurrence plots for noise reduction. Phys. Rev. E 65, 021102 (2002)

    Article  ADS  Google Scholar 

  44. Leontitsis, A., Bountis, T., Pagge, J.: An adaptive way for improving noise reduction using local geometric projection. Chaos 14(1), 106 (2004)

    Article  ADS  Google Scholar 

  45. Johnson, M.T., Povinelli, R.J.: Generalized phase space projection for nonlinear noise reduction. Physica D 201, 306–317 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Luo, X., Zhang, J., Small, M.: Optimal phase-space projection for noise reduction. Phys. Rev. E 72, 046710 (2005)

    Article  ADS  Google Scholar 

  47. Sauer, T.: A noise reduction method for signals from nonlinear systems. Physica D 58, 193–201 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Hegger, R., Schreiber, T.: A noise reduction method for multivariate time series. Phys. Lett. A 170, 305–310 (1992)

    Article  ADS  Google Scholar 

  49. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413 (1999)

    Article  ADS  MATH  Google Scholar 

  50. Kostelich, E.J., Yorke, J.A.: Noise reduction: finding the simplest dynamical system consistent with the data. Physica D 41, 183–196 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Jaeger, L., Kantz, H.: Unbiased reconstruction of the dynamics underlying a noisy chaotic time series. Chaos 6, 440 (1996)

    Article  ADS  Google Scholar 

  52. Bröcker, J., Parlitz, U.: Efficient noncausal noise reduction for deterministic time series. Chaos 11(2), 319 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Sprott, J.C.: Elegant Chaos. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  54. International Mathematics and Statistics Libraries (IMSL, vol. 4.01). Visual Numerics Inc. (1997)

Download references

Acknowledgements

This research was supported by the grant MTM2009-12672 given by the Spanish government’s Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Eugenia Mera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mera, M.E., Morán, M. Error Covariance Matrix Estimation of Noisy and Dynamically Coupled Time Series. J Stat Phys 150, 375–397 (2013). https://doi.org/10.1007/s10955-012-0683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0683-7

Keywords

Navigation