Skip to main content
Log in

Impact of Strong Magnetic Fields on Collision Mechanism for Transport of Charged Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion is achieved by magnetic confinement i.e., the plasma is confined into a toroidal domain (tokamak) under the action of huge magnetic fields. Several models exist for describing the evolution of strongly magnetized plasmas, most of them by neglecting the collisions between particles. The subject matter of this paper is to investigate the effect of large magnetic fields with respect to a collision mechanism. We consider here linear collision Boltzmann operators and derive, by averaging with respect to the fast cyclotronic motion due to strong magnetic forces, their effective collision kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Abdallah, N., Gamba, I.M., Klar, A.: The Milne problem for high field kinetic equations. SIAM J. Appl. Math. 64, 1709–1736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon & Breach, New York (1961)

    Google Scholar 

  3. Bostan, M.: The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime. Asymptot. Anal. 61, 91–123 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bostan, M.: Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics. J. Differ. Equ. 249, 1620–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bostan, M.: Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation. SIAM J. Multiscale Model. Simul. 8, 1923–1957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bostan, M.: Transport of charged particles under fast oscillating magnetic fields. SIAM J. Math. Anal. 44, 1415–1447 (2012)

    Article  MATH  Google Scholar 

  7. Bostan, M., Gamba, I.M., Goudon, T.: The linear Boltzmann equation with space periodic electric field. In: Nonlinear Partial Differential Equations and Related Topics. Transl. Am. Math. Soc., vol. 2(229), pp. 51–66. Am. Math. Soc., Providence (2010)

    Google Scholar 

  8. Bostan, M., Gamba, I.M., Goudon, T., Vasseur, A.: Boundary value problems for the stationary Vlasov-Boltzmann-Poisson equation. Indiana Univ. Math. J. 59, 1629–1660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bostan, M., Negulescu, C.: Mathematical models for strongly magnetized plasmas with mass disparate particles. Discrete Contin. Dyn. Syst., Ser. B 15, 513–544 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brizard, A.J.: A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11, 4429–4438 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. Brizard, A.J., Hahm, T.S.: Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  13. Cercignani, C., Gamba, I.M., Levermore, C.D.: High field approximations to a Boltzmann-Poisson system boundary conditions in a semiconductor. Appl. Math. Lett. 10, 111–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cercignani, C., Gamba, I.M., Levermore, C.D.: A drift-collision balance asymptotic for a Boltzmann-Poisson system in bounded domains. SIAM J. Appl. Math. 61, 1932–1958 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    MATH  Google Scholar 

  16. Frénod, E., Sonnendrücker, E.: Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field. Asymptot. Anal. 18, 193–213 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Garbet, X., Dif-Pradalier, G., Nguyen, C., Sarazin, Y., Grandgirard, V., Ghendrih, Ph.: Neoclassical equilibrium in gyrokinetic simulations. Phys. Plasmas 16 (2009)

  18. Garbet, X.: Towards a full self-consistent numerical simulation of tokamak plasma turbulence. Plasma Phys. Control. Fusion 39 (1997)

  19. Garbet, X.: Turbulence modeling in fusion plasmas. Europhys. News 29 (1998)

  20. Golse, F., Saint-Raymond, L.: The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. 78, 791–817 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Grandgirard, V., Brunetti, M., Bertrand, P., Besse, N., Garbet, X., Ghendrih, P., Manfredi, G., Sarazin, Y., Sauter, O., Sonnendrücker, E., Vaclavik, J., Villard, L.: A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. J. Comput. Phys. 217, 395–423 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hazeltine, R.D., Meiss, J.D.: Plasma Confinement. Dover, Mineola, New York (2003)

    Google Scholar 

  23. Littlejohn, R.G.: A guiding center Hamiltonian: a new approach. J. Math. Phys. 20, 2445–2458 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Littlejohn, R.G.: Hamiltonian formulation of guiding center motion. Phys. Fluids 24, 1730–1749 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)

    Book  MATH  Google Scholar 

  26. Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359–372 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rax, J.-M.: Physique des Plasmas, Cours et Applications. Dunod, Paris (2007)

    Google Scholar 

  28. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  29. Xu, X.Q., Rosenbluth, M.N.: Numerical simulation of ion-temperature-gradient-driven modes. Phys. Fluids, B 3, 627–643 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was initiated during the visit of the first author at the University of Texas at Austin. The second author acknowledges partial support from NSF grant DMS 1109625. Support from the Institute for Computational Engineering and Sciences at the University of Texas at Austin is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Bostan.

Proofs of Propositions 3.5, 3.6

Proofs of Propositions 3.5, 3.6

Proof of Proposition 3.5

1. We show that y→(ψ 0(y),…,ψ m−1(y)) is a change of coordinates. Indeed, if \(y, \overline{y} \in\mathbb{R}^{m}\) verify \(\psi_{i} (y) = \psi_{i} (\overline{y})\), i∈{0,1,…,m−1}, then \(y, \overline{y}\) belong to the same characteristic. Thus denoting by y 0 the discontinuity point of ψ 0 on this characteristic, there are \(h, \overline{h} \in[0,T_{c}(y_{0}))\), with \(h \leq\overline {h}\) without loss of generality, such that \(y = Y(h;y_{0}), \overline{y} = Y(\overline{h};y_{0})\). Integrating (b 0⋅∇ y ψ 0)(Y(s;y 0))=I(Y(s;y 0))=I(y 0) between h and \(\overline{h}\) we obtain

$$0 = \psi_0 (\overline{y}) - \psi_0 (y) = \psi_0 \bigl(Y(\overline {h};y_0)\bigr) - \psi_0\bigl(Y(h;y_0)\bigr) = (\overline{h} - h ) I(y_0). $$

Therefore \(h = \overline{h}\) which implies \(y = \overline{y}\). We have shown that y∈ℝm is uniquely determined by ψ 0(y),…,ψ m−1(y). Indeed, y belongs to the characteristic associated to the invariants ψ 1(y),…,ψ m−1(y) and, if we denote by y 0 the discontinuity point of ψ 0 on this characteristic, we have y=Y(s;y 0), where the parameter s∈[0,T c (y)) is determined by

$$\psi_0 (y) - \psi_0 (y_0) = \int _0^s \bigl(b^0 \cdot \nabla_y\psi_0\bigr) \bigl(Y(\tau ;y_0)\bigr) \mathrm{d}\tau= s I(y_0). $$

Finally, without loss of generality we suppose that ψ 0(y 0)=0 and thus ψ 0(y)∈[0,T c (y 0)I(y 0))=[0,[ψ 0])=[0,S). Clearly the map y→(ψ 0(y),…,ψ m−1(y)) is a surjection between ℝm and [0,SD, which shows 1.

2. Notice that ∇ y ψ 0∉span{∇ y ψ 1,…,∇ y ψ m−1} since b 0⋅∇ y ψ 0≠0 and b 0⋅∇ y ψ 1=⋯=b 0⋅∇ y ψ m−1=0. Thus, for any i∈{1,…,m−1} there is a unique vector field b i such that

$$b^i \cdot\nabla_y\psi_j = \delta^i_j, \quad j \in\{0,1,\ldots ,m-1\}, $$

which proves 2. □

Proof of Proposition 3.6

Notice that for any y∈ℝm the function

$$s \to u\bigl(Y(s;y)\bigr) = w\bigl(\psi_0 \bigl(Y(s;y)\bigr), \psi_1 (y),\ldots,\psi_{m-1} (y)\bigr) $$

is continuous on ℝ. In particular this holds true for any discontinuity point y 0 of ψ 0. For any y=Y(s;y 0), s∈(0,T c (y 0)) we can write

It remains to analyze the differentiability around the point y 0. Without loss of generality we assume that I>0. Taking s>0 one gets

(75)

where \(\partial_{\psi_{0}} w_{+}\) stands for the right derivative of w with respect to ψ 0. Taking now s<0, using the S-periodicity of w with respect to ψ 0, we obtain

(76)

where \(\partial_{\psi_{0}} w_{-}\) stands for the left derivative of w with respect to ψ 0. Combining (75), (76) we deduce that w is differentiable with respect to ψ 0 and at any point y∈ℝm

$$b^0 \cdot\nabla_yu = I(y) \partial_{\psi_0} w \bigl(\psi_0 (y),\ldots ,\psi_{m-1} (y)\bigr). $$

Moreover, for any i∈{1,…,m−1} we have

$$b^i \cdot\nabla_yu = \sum_{j =0 }^{m-1} \partial_{\psi_j} w b^i \cdot\nabla_y \psi_j = \partial_{\psi _i} w \bigl(\psi_0 (y), \ldots,\psi_{m-1} (y)\bigr),\quad y \in\mathbb{R}^m. $$

 □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bostan, M., Gamba, I.M. Impact of Strong Magnetic Fields on Collision Mechanism for Transport of Charged Particles. J Stat Phys 148, 856–895 (2012). https://doi.org/10.1007/s10955-012-0560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0560-4

Keywords

Navigation