Skip to main content
Log in

Equidistribution of Zeros of Holomorphic Sections in the Non-compact Setting

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider tensor powers L N of a positive Hermitian line bundle (L,h L) over a non-compact complex manifold X. In the compact case, B. Shiffman and S. Zelditch proved that the zeros of random sections become asymptotically uniformly distributed as N→∞ with respect to the natural measure coming from the curvature of L. Under certain boundedness assumptions on the curvature of the canonical line bundle of X and on the Chern form of L we prove a non-compact version of this result. We give various applications, including the limiting distribution of zeros of cusp forms with respect to the principal congruence subgroups of SL 2(ℤ) and to the hyperbolic measure, the higher dimensional case of arithmetic quotients and the case of orthogonal polynomials with weights at infinity. We also give estimates for the speed of convergence of the currents of integration on the zero-divisors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti, A., Grauert, H.: Algebraische Körper von automorphen Funktionen. In: Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Klasse, pp. 39–48 (1961)

    Google Scholar 

  2. Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Andreotti, A., Tomassini, G.: Some remarks on pseudoconcave manifolds. In: Haefinger, A., Narasimhan, R. (eds.) Essays on Topology and Related Topics Dedicated to G. de Rham, pp. 85–104. Springer, Berlin (1970)

    Chapter  Google Scholar 

  4. Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84, 442–528 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, R.J.: Bergman kernels and equilibrium measures for polarized pseudo-concave domains. Int. J. Math. 21(1), 77–115 (2010)

    Article  MATH  Google Scholar 

  6. Bismut, J.M., Lebeau, G.: Complex immersions and Quillen metrics. Publ. Math. IHÉS 74, 1–298 (1991)

    MATH  Google Scholar 

  7. Bleher, P., Di, X.: Correlation between zeros of a random polynomial. J. Stat. Phys. 88(1–2), 269–305 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142(2), 351–395 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bloom, T., Shiffman, B.: Zeros of random polynomials on ℂm. Math. Res. Lett. 14(3), 469–479 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5–6), 639–679 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Borel, A.: Pseudo-concavité et groupes arithmétiques. In: Haeflinger, A., Narasimhan, R. (eds.) Essays on Topology and Related Topics (Dedicated to G. de Rham), pp. 70–84. Springer, Berlin (1970)

    Chapter  Google Scholar 

  12. Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables, Katata, 1997. Trends Math., pp. 1–23. Birkhäuser Boston, Boston (1999)

    Chapter  Google Scholar 

  13. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cogdell, J., Luo, W.: The Bergman kernel and mass equidistribution on the Siegel modular variety (2008, preprint)

  15. Demailly, J.P.: In: Complex analytic and differential geometry (2001). Published online at www-fourier.ujf-grenoble.fr/~demailly/lectures.html

    Google Scholar 

  16. Dinh, T.C., Sibony, N.: Distribution des valeurs de transformations méromorphes et applications. Comment. Math. Helv. 81(1), 221–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinh, T.C., Sibony, N.: Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203(1), 1–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimension. II. In: T. Bloom et al. (eds.) Modern Methods in Complex Analysis. Ann. Math. Stud., vol. 137, pp. 135–182. Princeton University Press, Princeton (1995)

    Google Scholar 

  19. Fujiki, A.: An L 2 Dolbeault lemma and its applications. Publ. Res. Inst. Math. Sci. 28(5), 845–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  21. Hannay, J.H.: Chaotic analytic zero points: exact statistics for those of a random spin state. J. Phys. A 29(5), 101–105 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  22. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. (2) 172(2), 1517–1528 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Kobayashi, R.: Kähler-Einstein metric on an open algebraic manifold. Osaka J. Math. 21, 399–418 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Math., vol. 254, xiii, 422 p. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  25. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756–1815 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marshall, S.: Mass equidistribution for automorphic forms of cohomological type on GL 2 (2010, preprint). Available at arXiv:1006.3305

  27. Méo, M.: Image inverse d’un courant positif fermé par une application analytique surjective. C. R. Acad. Sci. Paris, Sér. I 322(12), 1141–1144 (1996)

    MATH  Google Scholar 

  28. Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathematics, vol. 6, xiv, 278 p. World Scientific, Singapore (1989).

    MATH  Google Scholar 

  29. Mok, N., Yau, S.T.: Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. In: The Mathematical Heritage of Henri Poincaré, Part 1. Proc. Symp. Pure Math., vol. 39, pp. 41–59. Amer. Math. Soc., Providence (1983)

    Google Scholar 

  30. Nadel, A.: On complex manifolds which can be compactified by adding finitely many points. Invent. Math. 101(1), 173–189 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Nelson, P.D.: Mass equidistribution of hilbert modular eigenforms. J. Am. Math. Soc. 24(4), 1051–1103 (2011), erratum J. Am. Math. Soc. 25(2), 615–616 (2012)

    Article  Google Scholar 

  32. Nonnenmacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Stat. Phys. 92(3–4), 451–518 (1998)

    MathSciNet  Google Scholar 

  33. Ruan, W.D.: Canonical coordinates and Bergmann metrics. Commun. Anal. Geom. 6(3), 589–631 (1998)

    MATH  Google Scholar 

  34. Rudnick, Z.: On the asymptotic distribution of zeros of modular forms. Int. Math. Res. Not. 2005(34), 2059–2074 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Satake, I.: On compactifications of the quotient spaces for arithmetically defined discontinuous groups. Ann. Math. 72, 555–580 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shepp, L.A., Vanderbei, R.J.: The complex zeros of random polynomials. Trans. Am. Math. Soc. 347(11), 4365–4384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Commun. Math. Phys. 200(3), 661–683 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Shiffman, B., Zelditch, S.: Number variance of random zeros on complex manifolds. Geom. Funct. Anal. 18(4), 1422–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sodin, M., Tsirelson, B.: Random complex zeroes. I: Asymptotic normality. Isr. J. Math. 144, 125–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)

    MATH  Google Scholar 

  42. Tian, G., Yau, S.: Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. In: Mathematical Aspects of String Theory. Proc. Conf. San Diego, Adv. Ser. Math. Phys., vol. 1, pp. 574–629 (1987)

    Google Scholar 

  43. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Barth, Leipzig (1995). 532 p.

    MATH  Google Scholar 

  44. Vâjâitu, V.: Some convexity properties of morphisms of complex spaces. Math. Z. 217(2), 215–245 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Marinescu.

Additional information

Supported by a DFG funded Mercator Professorship, SFB/TR 12 and Graduiertenkolleg 1269 “Globale Strukturen in Geometrie und Analysis”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, TC., Marinescu, G. & Schmidt, V. Equidistribution of Zeros of Holomorphic Sections in the Non-compact Setting. J Stat Phys 148, 113–136 (2012). https://doi.org/10.1007/s10955-012-0526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0526-6

Keywords

Navigation