Skip to main content
Log in

Charged Polymers in the Attractive Regime: A First-Order Transition from Brownian Scaling to Four-Point Localization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a quenched charged-polymer model, introduced by Garel and Orland in 1988 (Europhys. Lett. 6(7):597–601, 1988; Europhys. Lett. 6(4):307–310, 1988), that reproduces the folding/unfolding transition of biopolymers. We prove that, below the critical inverse temperature, the polymer is delocalized in the sense that: (1) the rescaled trajectory of the polymer converges to the Brownian path; and (2) the partition function remains bounded.

At the critical inverse temperature, we show that the maximum time spent at points jumps discontinuously from 0 to a positive fraction of the number of monomers, in the limit as the number of monomers tends to infinity.

Finally, when the inverse temperature is large, we prove that the polymer collapses in the sense that a large fraction of its monomers live on four adjacent positions, and its diameter grows only logarithmically with the number of the monomers.

Our methods also provide some insight into the annealed phase transition and at the transition due to a pulling force; both phase transitions are shown to be discontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselah, A.: Annealed lower tails for the energy of a charged polymer. J. Stat. Phys. 138(4–5), 619–644 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Asselah, A.: Annealed upper tails for the energy of a charged polymer. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 80–110 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bolthausen, E., Schmock, U.: On self-attracting d-dimensional random walks. Ann. Probab. 25(2), 531–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brydges, D.C., Slade, G.: The diffusive phase of a model of self-interacting walks. Probab. Theory Relat. Fields 103(3), 285–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.: Limit laws for the energy of a charged polymer. Ann. Inst. Henri Poincaré Probab. Stat. 44(4), 638–672 (2008)

    Article  ADS  MATH  Google Scholar 

  6. Chen, X., Khoshnevisan, D.: From charged polymers to random walk in random scenery. In Optimality: The 3rd E.L. Lehmann Symposium, IMS Lecture Notes Monogr. Ser., vol. 57, pp. 237–251 (2009)

  7. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. In: Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math., vol. 39, pp. 115–142. Math. Soc. Japan, Tokyo (2004)

    Google Scholar 

  8. den Hollander, F.: Random Polymers. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2009). Lectures from the 37th Probability Summer School held in Saint-Flour, 2007.

    Book  MATH  Google Scholar 

  9. Derrida, B., Griffiths, R.B., Higgs, P.G.: A model of directed walks with random self-interactions. Europhys. Lett. 18(4), 361 (1992)

    Article  ADS  Google Scholar 

  10. Derrida, B., Higgs, P.G.: Low-temperature properties of directed walks with random self interactions. J. Phys. A, Math. Gen. 27(16), 5485 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Garel, T., Orland, H.: Chemical sequence and spatial structure in simple models of biopolymers. Europhys. Lett. 6(7), 597–601 (1988)

    Article  ADS  Google Scholar 

  12. Garel, T., Orland, H.: Mean-field model for protein folding. Europhys. Lett. 6(4), 307–310 (1988)

    Article  ADS  Google Scholar 

  13. Giacomin, G.: Random Polymer Models. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  14. Golding, I., Kantor, Y.: Two-dimensional polymers with random short-range interactions. Phys. Rev. E 56(2), R1318–R1321 (1997)

    Article  ADS  Google Scholar 

  15. Hu, Y., Khoshnevisan, D.: Strong approximations in a charged-polymer model. Period. Math. Hung. 61(1–2), 213–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, N., Pruitt, W.: Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab. 15(1), 75–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kantor, Y., Kardar, M.: Polymers with random self-interactions. Europhys. Lett. 14(5), 421 (1991)

    Article  ADS  Google Scholar 

  18. Khoshnevisan, D.: A discrete fractal in \(\textbf{Z}^{1}_{+}\). Proc. Am. Math. Soc. 120(2), 577–584 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. R. Stat. Soc. B 30, 499–510 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883–909 (1973). With discussion by D.L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J.M. Hammersley, and a reply by the author

    Article  MathSciNet  MATH  Google Scholar 

  21. van der Hofstad, R., König, W.: A survey of one-dimensional random polymers. J. Stat. Phys. 103(5–6), 915–944 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davar Khoshnevisan.

Additional information

Research supported by NSF grants DMS-0706728 and DMS-1006903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Khoshnevisan, D. & Wouts, M. Charged Polymers in the Attractive Regime: A First-Order Transition from Brownian Scaling to Four-Point Localization. J Stat Phys 144, 948 (2011). https://doi.org/10.1007/s10955-011-0280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0280-1

Keywords

Navigation