Skip to main content
Log in

Random Walk with Barycentric Self-interaction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behaviour of a d-dimensional self-interacting random walk (X n ) n∈ℕ (ℕ:={1,2,3,…}) which is repelled or attracted by the centre of mass \(G_{n} = n^{-1} \sum_{i=1}^{n} X_{i}\) of its previous trajectory. The walk’s trajectory (X 1,…,X n ) models a random polymer chain in either poor or good solvent. In addition to some natural regularity conditions, we assume that the walk has one-step mean drift

$$\mathbb{E}[X_{n+1} - X_n \mid X_n - G_n = \mathbf{x}] \approx\rho\|\mathbf{x}\|^{-\beta}\hat{ \mathbf{x}}$$

for ρ∈ℝ and β≥0. When β<1 and ρ>0, we show that X n is transient with a limiting (random) direction and satisfies a super-diffusive law of large numbers: n −1/(1+β) X n converges almost surely to some random vector. When β∈(0,1) there is sub-ballistic rate of escape. When β≥0 and ρ∈ℝ we give almost-sure bounds on the norms ‖X n ‖, which in the context of the polymer model reveal extended and collapsed phases.

Analysis of the random walk, and in particular of X n G n , leads to the study of real-valued time-inhomogeneous non-Markov processes (Z n ) n∈ℕ on [0,∞) with mean drifts of the form

$$ \mathbb{E}[ Z_{n+1} - Z_n \mid Z_n = x ] \approx\rho x^{-\beta} - \frac {x}{n},$$
(0.1)

where β≥0 and ρ∈ℝ. The study of such processes is a time-dependent variation on a classical problem of Lamperti; moreover, they arise naturally in the context of the distance of simple random walk on ℤd from its centre of mass, for which we also give an apparently new result. We give a recurrence classification and asymptotic theory for processes Z n satisfying (0.1), which enables us to deduce the complete recurrence classification (for any β≥0) of X n G n for our self-interacting walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akuezue, H.C., Stringer, J.: Random aggregation and random-walking center of mass. J. Stat. Phys. 56, 461–470 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Angel, O., Benjamini, I., Virág, B.: Random walks that avoid their past convex hull. Electron. Commun. Probab. 8, 6–16 (2003)

    Article  Google Scholar 

  3. Atkinson, R.A., Clifford, P.: The escape probability for integrated Brownian motion with non-zero drift. J. Appl. Probab. 31, 921–929 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benaïm, M., Ledoux, M., Raimond, O.: Self-interacting diffusions. Probab. Theory Relat. Fields 122, 1–41 (2002)

    Article  MATH  Google Scholar 

  5. Beffara, V., Friedli, S., Velenik, Y.: Scaling limit of the prudent walk. Electron. Commun. Probab. 15, 44–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambeu, S., Kurtzmann, A.: Some particular self-interacting diffusions: ergodic behaviour and almost-sure convergence. To appear in Bernoulli

  7. Chayes, L.: Ballistic behaviour for biased self-avoiding walks. Stoch. Process. Appl. 119, 1470–1478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, K.L.: A Course in Probability Theory, 2nd edn. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  9. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math., vol. 39, pp. 115–142 (2004)

    Google Scholar 

  10. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Durrett, R.T., Rogers, L.C.G.: Asymptotic behavior of Brownian polymers. Probab. Theory Relat. Fields 92, 337–349 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  13. Fouks, J.-D., Lesigne, E., Peigné, M.E.: Étude asymptotique d’une marche aléatoire centrifuge. Ann. Inst. Henri Poincaré Probab. Stat. 42, 147–170 (2006)

    Article  ADS  MATH  Google Scholar 

  14. Giacomin, G.: Random Polymer Models. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  15. Grill, K.: On the average of a random walk. Stat. Probab. Lett. 6, 357–361 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. den Hollander, F.: Random Polymers. Lect. Notes Math., vol. 1974. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Hughes, B.D.: Random Walks and Random Environments, vol. 1: Random Walks. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  18. Ioffe, D., Velenik, Y.: Ballistic phase of self-interacting random walks. In: Mörters, P., et al. (eds.) Analysis and Stochastics of Growth Processes and Interface Models. Oxford University Press, London (2008)

    Google Scholar 

  19. Isozaki, Y., Watanabe, S.: An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Jpn. Acad. 70, 271–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185, 239–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamperti, J.: Criteria for the recurrence or transience of stochastic processes I. J. Math. Anal. Appl. 1, 314–330 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lamperti, J.: A new class of probability limit theorems. J. Math. Mech. 11, 749–772 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Lamperti, J.: Criteria for stochastic processes II: passage-time moments. J. Math. Anal. Appl. 7, 127–145 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47, 655–693 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. Proc. Symp. Pure Math., vol. 72, pp. 339–364. Am. Math. Soc, Providence (2004)

    Google Scholar 

  27. MacPhee, I.M., Menshikov, M.V., Wade, A.R.: Angular asymptotics for multi-dimensional non-homogeneous random walks with asymptotically zero drifts. Markov Process. Relat. Fields 16, 351–388 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  29. Menshikov, M.V., Vachkovskaia, M., Wade, A.R.: Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. J. Stat. Phys. 132, 1097–1133 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Menshikov, M.V., Volkov, S.: Urn-related random walk with drift ρx α/t β. Electron. J. Probab. 13, 944–960 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Menshikov, M.V., Wade, A.R.: Rate of escape and central limit theorem for the supercritical Lamperti problem. Stoch. Process. Appl. 120, 2078–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mountford, T., Tarrès, P.: An asymptotic result for Brownian polymers. Ann. Inst. Henri Poincaré Probab. Stat. 44, 29–46 (2008)

    Article  ADS  MATH  Google Scholar 

  33. Norris, J.R., Rogers, L.C.G., Williams, D.: Self-avoiding random walk: a Brownian model with local time drift. Probab. Theory Relat. Fields 74, 271–287 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Révész, P.: Random Walk in Random and Non-Random Environments, 2nd edn., World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  36. Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, London (2003)

    Google Scholar 

  37. Rudnick, J., Gaspari, G.: Elements of the Random Walk. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  38. Watanabe, H.: An asymptotic property of Gaussian processes. I. Trans. Am. Math. Soc. 148, 233–248 (1970)

    Article  MATH  Google Scholar 

  39. Zerner, M.P.W.: On the speed of a planar random walk avoiding its past convex hull. Ann. Inst. Henri Poincaré Probab. Stat. 41, 887–900 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comets, F., Menshikov, M.V., Volkov, S. et al. Random Walk with Barycentric Self-interaction. J Stat Phys 143, 855–888 (2011). https://doi.org/10.1007/s10955-011-0218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0218-7

Keywords

Navigation