Skip to main content
Log in

Charge and Current Sum Rules in Quantum Media Coupled to Radiation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper concerns the equilibrium bulk charge and current density correlation functions in quantum media, conductors and dielectrics, fully coupled to the radiation (the retarded regime). A sequence of static and time-dependent sum rules, which fix the values of certain moments of the charge and current density correlation functions, is obtained by using Rytov’s fluctuational electrodynamics. A technique is developed to extract the classical and purely quantum-mechanical parts of these sum rules. The sum rules are critically tested in the classical limit and on the jellium model. A comparison is made with microscopic approaches to systems of particles interacting through Coulomb forces only (the non-retarded regime). In contrast with microscopic results, the current-current density correlation function is found to be integrable in space, in both classical and quantum regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debye, P., Hückel, E.: The theory of electrolytes, I: lowering of freezing point and related phenomena. Phys. Z. 24, 185–206 (1923)

    Google Scholar 

  2. Felderhof, B.U.: A theory of fluctuations in plasmas. Physica 30, 1771–1792 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  3. Felderhof, B.U.: On fluctuations and coherence of radiation in classical and semi-classical plasmas. Physica 31, 295–316 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. Van Kampen, N.G., Felderhof, B.U.: Theoretical Methods in Plasma Physics. North-Holland, Amsterdam (1967)

    MATH  Google Scholar 

  5. Stillinger, F.H., Lovett, R.: General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49, 1991–1994 (1968)

    Article  ADS  Google Scholar 

  6. Pines, D., Nozières, Ph.: The Theory of Quantum Liquids. Benjamin, New York (1966)

    Google Scholar 

  7. Martin, Ph.A., Oguey, Ch.: Dipole and current fluctuations in the quantum one-component plasma at equilibrium. J. Phys. A, Math. Gen. 18, 1995–2016 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  8. Martin, Ph.A., Oguey, Ch.: Screening of classical charges in quantum Coulomb systems. Phys. Rev. A 33, 4191–4198 (1986)

    Article  ADS  Google Scholar 

  9. Martin, Ph.A.: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    Article  ADS  Google Scholar 

  10. John, P., Suttorp, L.G.: Equilibrium fluctuation formulae for the quantum one-component plasma in a magnetic field. Physica A 192, 280–304 (1993)

    Article  ADS  Google Scholar 

  11. Alastuey, A., Martin, Ph.A.: Absence of exponential clustering in quantum Coulomb fluids. Phys. Rev. A 40, 6485–6520 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Brydges, D.C., Martin, Ph.A.: Coulomb systems at low density: a review. J. Stat. Phys. 96, 1163–1330 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. El Boustani, S., Buenzli, P.R., Martin, Ph.A.: Equilibrium correlations in charged fluids coupled to the radiation field. Phys. Rev. E 73, 036113 (2006)

    Article  ADS  Google Scholar 

  14. Buenzli, P.R., Martin, Ph.A., Ryser, M.D.: Thermal quantum electrodynamics of non relativistic charged fluids. Phys. Rev. E 75, 041125 (2007)

    Article  ADS  Google Scholar 

  15. Jancovici, B.: Electric-field correlation in quantum charged fluids coupled to the radiation field. Phys. Rev. E 74, 052103 (2006)

    Article  ADS  Google Scholar 

  16. Høye, J.S., Stell, G.: Quantum statistical mechanics for polarizable fluids. J. Chem. Phys. 75, 5133–5142 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  17. Thompson, M.J., Schweizer, K.S., Chandler, D.: Quantum theory of polarization in liquids: Exact solution of the mean spherical and related approximations. J. Chem. Phys. 76, 1128–1135 (1982)

    Article  ADS  Google Scholar 

  18. Rytov, S.M.: Theory of Electrical Fluctuations and Thermal Radiation. Publishing House of AS USSR, Moscow (1953)

    Google Scholar 

  19. Rytov, S.M.: Correlation theory of thermal fluctuations in an isotropic medium. Sov. Phys. JETP 6, 130–140 (1958)

    MathSciNet  ADS  Google Scholar 

  20. Levin, M.L., Rytov, S.M.: Theory of Equilibrium Thermal Fluctuations in Electrodynamics. Science, Moscow (1967)

    Google Scholar 

  21. Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics. Pergamon, Oxford (1981)

    Google Scholar 

  22. Sitenko, A., Malnev, V.: Plasma Physics Theory. Kluwer, London (1995)

    MATH  Google Scholar 

  23. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    MathSciNet  Google Scholar 

  24. Joulain, K., Mulet, J.P., Marquier, F., Carminati, R., Greffet, J.J.: Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005)

    Article  ADS  Google Scholar 

  25. Šamaj, L., Jancovici, B.: Equilibrium long-ranged charge correlations at the surface of a conductor coupled to electromagnetic radiation. Phys. Rev. E 78, 051119 (2008)

    Article  ADS  Google Scholar 

  26. Jancovici, B., Šamaj, L.: Equilibrium long-ranged charge correlations at the surface between media coupled to electromagnetic radiation. Phys. Rev. E 80, 031139 (2009)

    Article  Google Scholar 

  27. Alastuey, A.: Breakdown of Debye screening in quantum Coulomb systems and van der Waals forces. Physica A 263, 271–283 (1999)

    Article  ADS  Google Scholar 

  28. Cornu, F.: Exact algebraic tails of static correlations in quantum plasmas at low density. Phys. Rev. Lett. 78, 1464–1467 (1997)

    Article  ADS  Google Scholar 

  29. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1975)

    MATH  Google Scholar 

  30. Landau, L., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  31. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, London (2000)

    MATH  Google Scholar 

  32. Jancovici, B.: Classical Coulomb systems: screening and correlations revisited. J. Stat. Phys. 80, 445–459 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Chandler, D.: The dielectric constant and related equilibrium properties of molecular fluids: interaction site cluster theory analysis. J. Chem. Phys. 67, 1113–1124 (1977)

    Article  ADS  Google Scholar 

  34. Alastuey, A., Ballenegger, V.: Statistical mechanics of dipolar fluids: dielectric constant and sample shape. Physica A 279, 268–286 (2000)

    Article  ADS  Google Scholar 

  35. Ballenegger, V., Martin, Ph.A.: Dielectric versus conductive behaviour in quantum gases: exact results for the hydrogen plasma. Physica A 328, 97–144 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  36. Jancovici, B.: Private communication

  37. Bohr, N.: Dissertation, Copenhagen (1911)

  38. Van Leeuwen, H.J.: Problèmes de la théorie électronique du magnétisme. J. Phys. Radium 2, 361–377 (1921)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Šamaj.

Additional information

Unité Mixte de Recherche No. 8627—CNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamaj, L. Charge and Current Sum Rules in Quantum Media Coupled to Radiation. J Stat Phys 137, 1–17 (2009). https://doi.org/10.1007/s10955-009-9845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9845-7

Keywords

Navigation