Skip to main content
Log in

Singular Boundaries in the Forward Chapman-Kolmogorov Differential Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The forward Chapman-Kolmogorov differential equation is used to model the time evolution of the Probability Density Function of fluctuations. This equation may be restricted to either Master, Fokker-Planck or Liouville equations. A derivation of the Liouville equation with possible singular boundary conditions has already been presented in a previous publication (Valiño and Hierro in Phys. Rev. E 67:046310, 2003). In this paper, that derivation is extended to the full Chapman-Kolmogorov differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice Hall, Englewood Cliffs (1962)

    MATH  Google Scholar 

  2. Bharucha-Reid, A.: Elements of the theory of Markov processes and their applications. McGraw–Hill, New York (1960)

    MATH  Google Scholar 

  3. Dopazo, C.: Recent developments in pdf methods. In: Libby, P., Williams, F. (eds.) Turbulent Reactive Flows. Academic Press, New York (1994)

    Google Scholar 

  4. Dopazo, C., O’Brien, E.E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)

    Article  Google Scholar 

  5. Dopazo, C., Valiño, L., Fueyo, N.: Statistical description of the turbulent mixing of scalar fields. Int. J. Mod. Phys. B 11, 2975–3014 (1997)

    Article  ADS  Google Scholar 

  6. Dubrovin, B., Fomenko, A., Novikov, S.: Modern Geometry. Methods and Applications I. Springer, New York (1984)

    MATH  Google Scholar 

  7. Feller, W.: The parabollic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    Article  MathSciNet  Google Scholar 

  8. Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 97, 1–31 (1954)

    Article  MathSciNet  Google Scholar 

  9. Gardiner, C.: Handbook of Stochastic Methods. Springer, Berlin (1985)

    Google Scholar 

  10. Graham, R.: Covariant formulation of non-equilibrium statistical thermodynamics. Z. Phys. B 26, 397–405 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  11. Hierro, J.: Statistical methods to simulate the evolution of scalar and gradient fields in homogeneous, isotropic turbulence. Ph.D. (in Spanish). Ph.D. thesis, Universidad de Zaragoza, M. de Luna 10, 50018 Zaragoza (2003)

  12. Karlin, S., Taylor, H.: A Second Course in Stochastic Processes. Academic Press, London (1981)

    MATH  Google Scholar 

  13. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  14. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  15. Kuznetsov, V., Sabel’nikov, V.: Turbulence and Combustion. Hemisphere, New York (1990)

    MATH  Google Scholar 

  16. Lubashevsky, I., Friedrich, R., Mahnke, R., Ushakov, A., Kubrakov, N.: Boundary singularities and boundary conditions for the Fokker-Planck equation. http://arxiv.org/abs/math-ph/0612037 (2006)

  17. Meyer, D., Jenny, P.: Consistent inflow and outflow boundary conditions for transported probability density function methods. J. Comput. Phys. 226, 1859–1873 (2007)

    Article  MathSciNet  Google Scholar 

  18. Nakahara, M.: Geometry and Topology in Physics. Adam Hilger, Bristol (1990)

    Book  Google Scholar 

  19. Pope, S.: Pdf methods for turbulent flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  20. Risken, H.: The Fokker-Planck Equation, 2nd edn. Springer, New York (1989)

    MATH  Google Scholar 

  21. Valiño, L., Hierro, J.: Boundary conditions of probability density function transport equations in fluid mechanics. Phys. Rev. E 67, 046310 (2003)

    Article  ADS  Google Scholar 

  22. Vladimirov, V.: Equations of Mathematical Physics. Mir, Moscow (1984)

    Google Scholar 

  23. Welton, W., Pope, S.: PDF model calculations of compressible turbulent flows using Smoothed Particle Hydrodynamics. J. Comput. Phys. 134, 150–168 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Hierro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hierro, J., Dopazo, C. Singular Boundaries in the Forward Chapman-Kolmogorov Differential Equation. J Stat Phys 137, 305 (2009). https://doi.org/10.1007/s10955-009-9842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-009-9842-x

Keywords

Navigation