Skip to main content
Log in

On the Nature of Bose-Einstein Condensation in Disordered Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the perfect Bose gas in random external potentials and show that there is generalized Bose-Einstein condensation in the random eigenstates if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose gas. Moreover, we prove that the amounts of both condensate densities are equal. Our method is based on the derivation of an explicit formula for the occupation measure in the one-body kinetic-energy eigenstates which describes the repartition of particles among these non-random states. This technique can be adapted to re-examine the properties of the perfect Bose gas in the presence of weak (scaled) non-random potentials, for which we establish similar results. In addition some of our results can be applied to models with diagonal interactions, that is, models which conserve the occupation density in each single particle eigenstate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kac, M., Luttinger, J.M.: J. Math. Phys. 14, 1626–1628 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  2. Kac, M., Luttinger, J.M.: J. Math. Phys. 15, 183–186 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  3. Luttinger, J.M., Sy, H.K.: Phys. Rev. A 7, 712–720 (1973)

    Article  ADS  Google Scholar 

  4. Lenoble, O., Pastur, L.A., Zagrebnov, V.A.: C.R. Acad. Sci. (Paris), Phys. 5, 129–142 (2004)

    ADS  Google Scholar 

  5. Lenoble, O., Zagrebnov, V.A.: Markov Process. Relat. Fields 13, 441–468 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Zagrebnov, V.A., Bru, J.-B.: Phys. Rep. 350, 291–434 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Ginibre, J.: Commun. Math. Phys. 8, 26–51 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Lieb, E.H., Seiringer, R., Yngvason, J.: Phys. Rev. Lett. 94, 080401 (2005)

    Article  ADS  Google Scholar 

  9. Fannes, M., Pulé, J.V., Verbeure, A.: Helv. Phys. Acta 5, 391–399 (1982)

    Google Scholar 

  10. Buffet, E., de Smedt, Ph., Pulé, J.V.: J. Phys. A: Math. Gen. 16, 4307–4324 (1983)

    Article  ADS  Google Scholar 

  11. Fannes, M., Verbeure, A.: J. Math. Phys. 21, 1809–1818 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. Huang, K., Men, H.F.: Phys. Rev. Lett. 69, 644–647 (1992)

    Article  ADS  Google Scholar 

  13. Kobayashi, M., Tsubota, M.: Phys. Rev. 66, 174516 (2002)

    Article  ADS  Google Scholar 

  14. Kirsch, W., Martinelli, F.: Commun. Math. Phys. 89, 27–40 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Simon, B.: J. Stat. Phys. 38, 65–76 (1985)

    Article  ADS  Google Scholar 

  16. Pastur, L.A., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. van den Berg, M., Lewis, J.T., Pulé, J.V.: Helv. Phys. Acta 59, 1271–1288 (1986)

    MathSciNet  Google Scholar 

  18. Pulé, J.V., Zagrebnov, V.A.: J. Math. Phys. 45, 3565–3583 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Pulé, J.V., Zagrebnov, V.A.: J. Phys. A: Math. Gen. 37, 8929–8935 (2004)

    Article  MATH  ADS  Google Scholar 

  20. Jaeck, Th.: J. Phys. A: Math. Gen. 39, 9961–9964 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1957)

    Google Scholar 

  22. Reed, M., Simon, B.: Methods of Mathematical Physics, IV: Analysis of Operators. Academic Press, London (1978)

    MATH  Google Scholar 

  23. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1957)

    Google Scholar 

  24. Pulé, J.V.: J. Math. Phys. 24, 138–142 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. Van den Berg, M., Lewis, J.T.: Commun. Math. Phys. 81, 475–494 (1981)

    Article  ADS  Google Scholar 

  26. Tamura, H., Zagrebnov, V.A.: J. Math. Phys. 50, 023301–28 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Macris, N., Martin, Ph.A., Pulé, J.V.: Commun. Math. Phys. 117, 215–241 (1988)

    Article  MATH  ADS  Google Scholar 

  28. Thirring, W.: Vorlesungen über mathematische Physik, T7: Quantenmechanik. Universität Wien Lecture Notes, Sect. 2.9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jaeck.

Additional information

T. Jaeck is PhD student at UCD and Université de la Méditerranée (Aix-Marseille II, France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeck, T., Pulé, J.V. & Zagrebnov, V.A. On the Nature of Bose-Einstein Condensation in Disordered Systems. J Stat Phys 137, 19–55 (2009). https://doi.org/10.1007/s10955-009-9825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9825-y

Keywords

Navigation