Skip to main content
Log in

On Bose–Einstein Condensation in One-Dimensional Noninteracting Bose Gases in the Presence of Soft Poisson Obstacles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Bose–Einstein condensation (BEC) in one-dimensional noninteracting Bose gases in Poisson random potentials on \(\mathbb R\) with single-site potentials that are nonnegative, compactly supported, and bounded measurable functions in the grand-canonical ensemble at positive temperatures and in the thermodynamic limit. For particle densities larger than a critical one, we prove the following: With a probability arbitrarily close to one when choosing the fixed strength of the random potential sufficiently large, BEC where only the ground state is macroscopically occupied occurs. If the strength of the Poisson random potential converges to infinity in a certain sense but arbitrarily slowly, then this kind of BEC occurs in probability and in the rth mean, \(r \ge 1\). Furthermore, in Poisson random potentials of any fixed strength a probability arbitrarily close to one for type-I g-BEC to occur is also obtained, but our upper bound for the number of macroscopically occupied one-particle states may be large in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Erdős, L.: Lifschitz tail in a magnetic field: the nonclassical regime. Probab. Theory Relat. Fields 112(3), 321–371 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Germinet, F., Hislop, P.D., Klein, A.: On localization for the Schrödinger operator with a Poisson random potential. Compt. Rend. Math. 341, 525–528 (2005)

    Article  MATH  Google Scholar 

  3. Germinet, F., Hislop, P.D., Klein, A.: Localization for Schrödinger operators with Poisson random potential. J. Eur. Math. Soc. 9, 577–607 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Springer, New York (1965)

    Book  MATH  Google Scholar 

  5. Jaeck, T., Pulé, J.V., Zagrebnov, V.A.: On the nature of Bose–Einstein condensation in disordered systems. J. Stat. Phys. 137, 19–55 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Jaeck, T., Pulé, J.V., Zagrebnov, V.A.: On the nature of Bose–Einstein condensation enhanced by localization. J. Math. Phys. 51, 103302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kac, M., Luttinger, J.M.: Bose–Einstein condensation in the presence of impurities. J. Math. Phys. 14, 1626–1628 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kac, M., Luttinger, J.M.: Bose–Einstein condensation in the presence of impurities. II. J. Math. Phys. 15, 183–186 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kerner, J., Pechmann, M., Spitzer, W.: Bose–Einstein condensation in the Luttinger–Sy model with contact interaction. Ann. Henri Poincaré 20, 2101–2134 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kerner, J., Pechmann, M., Spitzer, W.: On Bose–Einstein condensation in the Luttinger–Sy model with finite interaction strength. J. Stat. Phys. 174, 1346–1371 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kerner, J., Pechmann, M., Spitzer, W.: On a condition for type-I Bose–Einstein condensation in random potentials in $d$ dimensions. J. Math. Pures Appl. 143, 287–310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kingman, J.F.C.: Poisson Processes. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  13. Klopp, F., Veniaminov, N.A.: Interacting electrons in a random medium: a simple one-dimensional model (2014). arxiv:1408.5839

  14. Lenoble, O., Zagrebnov, V.A.: Bose–Einstein condensation in the Luttinger–Sy model. Mark. Proc. Relat. Fields 13, 441–468 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Lenoble, O., Pastur, L.A., Zagrebnov, V.A.: Bose–Einstein condensation in random potentials. Compt. Rend. Phys. 5, 129–142 (2004)

    Article  ADS  Google Scholar 

  16. Leschke, H., Müller, P., Warzel, S.: A survey of rigorous results on random Schrödinger operators for amorphous solids. In: Deuschel, J.D., Greven, A. (eds.) Interacting Stochastic Systems, pp. 119–151. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Luttinger, J.M., Sy, H.K.: Bose–Einstein condensation in a one-dimensional model with random impurities. Phys. Rev. A 7, 712–720 (1973)

    Article  ADS  Google Scholar 

  18. Luttinger, J.M., Sy, H.K.: Low-lying energy spectrum of a one-dimensional disordered system. Phys. Rev. A 7, 701–712 (1973)

    Article  ADS  Google Scholar 

  19. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  20. Pechmann, M.: Bose–Einstein condensation in random potentials. PhD thesis, FernUniversität in Hagen (2019)

  21. Reed, M., Simon, B.: Analysis of Operators. Methods of Modern Mathematical Physics, vol. 4. Academic Press, New York (1978)

    MATH  Google Scholar 

  22. Seiringer, R., Warzel, S.: Decay of correlations and absence of superfluidity in the disordered Tonks–Girardeau gas. New J. Phys. 18, 035002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Seiringer, R., Yngvason, J., Zagrebnov, V.A.: Disordered Bose–Einstein condensates with interaction in one dimension. J. Stat. Mech. Theory Exp. 2012, P11007 (2012)

    Article  Google Scholar 

  24. Stolz, G.: Localization for random Schrödinger operators with Poisson potential. Annales de l’IHP Physique théorique 63, 297–314 (1995)

    MATH  Google Scholar 

  25. Sznitman, A.S.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  26. van den Berg, M.: On condensation in the free-boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31, 623–637 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. van den Berg, M., Lewis, J.T.: On generalized condensation in the free boson gas. Physica A Stat. Mech. Appl. 110, 550–564 (1982)

    Article  MathSciNet  Google Scholar 

  28. van den Berg, M., Lewis, J.T., Lunn, M.: On the general theory of Bose–Einstein condensation and the state of the free boson gas. Helv. Phys. Acta 59, 1289–1310 (1986)

    MathSciNet  Google Scholar 

  29. van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose–Einstein condensation. Helv. Phys. Acta 59, 1271–1288 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their useful remarks that led to an improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Pechmann.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Simone Warzel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Generalized Bose–Einstein Condensation

In this appendix, we prove Theorem 2.4 part (ii), that is, the \({\mathbb {P}}\)-almost sure occurrence of g-BEC in the case of a Poisson random potential with a strength that converges to infinity, see Theorem A.7. For this, we firstly state several lemmata (Lemmata A.1A.6). For the proof of Lemma A.1, we refer to [15, Corollary 3.5] in combination with [10, Lemma A.5]. We prove Lemmata A.2A.6, since these statements are more general than the ones that can be found in [15] and [10]. Also, note that we use these Lemmata in our proofs in Sect. 5.

Recall Remark 2.2 and the fact that the chemical potential \(\mu _{N,V_N}^{\omega } \in (-\infty , E_{N,V_N}^{1,\omega })\) is for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \) and for all \(N \in {\mathbb {N}}\) uniquely determined by the equation (2.15).

Lemma A.1

Let V be a Poisson random potential of fixed strength. If \(\mu < 0\), then \({\mathbb {P}}\)-almost surely

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } \int _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{N,V}^{\omega }(\mathrm{d} E) = \int _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E). \end{aligned}$$
(A.1)

For the proofs of the next two lemmata, we define the function

$$\begin{aligned} \chi _{{\mathcal {E}}_1, {\mathcal {E}}_2} : {\mathbb {R}}&\rightarrow [0,1], \nonumber \\ E&\mapsto \dfrac{E - \frac{{\mathcal {E}}_1}{2}}{\frac{{\mathcal {E}}_1}{2}} {\mathbf {1}}_{(\frac{{\mathcal {E}}_1}{2},{\mathcal {E}}_1)}(E) + {\mathbf {1}}_{[{\mathcal {E}}_1, {\mathcal {E}}_2]}(E) + [1 - (E - {\mathcal {E}}_2)] {\mathbf {1}}_{({\mathcal {E}}_2, {\mathcal {E}}_2 + 1)}(E) \end{aligned}$$
(A.2)

where \({\mathcal {E}}_1, {\mathcal {E}}_2 > 0\) are two constants with \(0<{\mathcal {E}}_1<{\mathcal {E}}_2\). The reason for the introduction of this continuous cutoff function is the \({\mathbb {P}}\)-almost sure convergence of the density of states \(({\mathcal {N}}_{N,V}^{\omega })_{N \in {\mathbb {N}}}\) in the vague rather than weak sense.

Lemma A.2

Let V be a Poisson random potential of fixed strength. Furthermore, let \(\varepsilon >0\) and \({\mathcal {E}}_2 > \varepsilon \) be given, and \(\chi _{\varepsilon , {\mathcal {E}}_2}\) as in (A.2). Then for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \) we have: If \((\hat{\mu }_N^{\omega })_{N \in {\mathbb {N}}} \subset {\mathbb {R}}\) is a sequence with \(\lim _{N \rightarrow \infty } \hat{\mu }_N^{\omega } = 0\), then

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) \, {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E) = \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) \, {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V} (\mathrm{d} E). \end{aligned}$$
(A.3)

Proof

For \({\mathbb {P}}\)-almost all \(\omega \in \Omega \) and all \(N \in {\mathbb {N}}\) we have

$$\begin{aligned}&\left| \, \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) \, {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E) - \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) \, {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V} (\mathrm{d} E) \, \right| \\&\quad \le \, \left| \, \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) \big [ {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) - {\mathcal {B}}(E) \big ] \, {\mathcal {N}}_{N,V}^{\omega }(\mathrm{d} E) \, \right| \\&\qquad + \, \left| \, \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{N,V}^{\omega }(\mathrm{d} E) - \int _{{\mathbb {R}}} \chi _{\varepsilon , {\mathcal {E}}_2}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E) \, \right| . \end{aligned}$$

The last term \({\mathbb {P}}\)-almost surely converges to zero in the limit \(N \rightarrow \infty \), because \({\mathcal {N}}_{N,V}^{\omega }\) \({\mathbb {P}}\)-almost surely convergences in the vague sense to \({\mathcal {N}}_{\infty ,V}\) and \(\chi _{\varepsilon , {\mathcal {E}}_2} \, {\mathcal {B}}\) is a continuous, compactly supported function. In addition, using the fact that \({\mathcal {B}}(E - \hat{\mu }_N^{\omega }) - {\mathcal {B}}(E) = (\mathrm{e}^{\beta E} - \mathrm{e}^{\beta (E - \hat{\mu }_N^{\omega })}) {\mathcal {B}}(E ) {\mathcal {B}}(E - \hat{\mu }_N^{\omega } )\) and inequality (5.1), we conclude that the first term in the limit \(N \rightarrow \infty \) converges to zero as well. \(\square \)

Lemma A.3

Suppose V is a Poisson random potential of fixed strength. Let an \(\varepsilon > 0\) and an \(\omega \in \widetilde{\Omega }\) be arbitrarily given, and let \((\hat{\mu }_N^{\omega })_{N \in {\mathbb {N}}} \subset {\mathbb {R}}\) be a sequence that converges to zero. Then

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E) \le \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E) + \dfrac{2}{\beta \varepsilon } {\mathcal {N}}_{\infty ,V}^{\mathrm{I}}(\varepsilon ) \end{aligned}$$
(A.4)

and

$$\begin{aligned} \liminf \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E) \ge \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E) - \dfrac{4}{\beta \varepsilon } {\mathcal {N}}_{\infty ,V}^{\mathrm{I}}(2\varepsilon ). \end{aligned}$$
(A.5)

Proof

We begin by showing (A.4). Let \(E_2 > \varepsilon \) be arbitrarily given. Using the fact that the function \({\mathcal {B}}\) is monotonically decreasing, integration by parts, and the inequality \({\mathcal {N}}_{N,V}^{\mathrm{I},\omega }(E) \le \pi ^{-1} E^{1/2}\) for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \), for all \(E \ge 0\), and all \(N \in {\mathbb {N}}\), we conclude

$$\begin{aligned} \int _{(E_2,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E) \le \beta \pi ^{-1} \int _{E_2}^{\infty } E^{1/2} \big [ {\mathcal {B}}(E- \varepsilon /2) \big ]^{2} \mathrm{e}^{\beta (E - \varepsilon /2)} \, \mathrm{d} E \end{aligned}$$

for all but finitely many \(N \in {\mathbb {N}}\), which converges to zero in the limit \(E_2 \rightarrow \infty \). Thus, with \(\chi _{\varepsilon , E_2}\) as in (A.2), with Lemma A.2, and since \({\mathcal {B}}(\varepsilon /2) \le 2/(\beta \varepsilon )\),

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega } (\mathrm{d} E)&\le \lim \limits _{E_2 \rightarrow \infty } \int _{{\mathbb {R}}} \chi _{\varepsilon , E_2}(E) \, {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E) \\&\le \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,V}(\mathrm{d} E) + \dfrac{2}{\beta \varepsilon } {\mathcal {N}}_{\infty ,V}^{\mathrm{I}}(\varepsilon ). \end{aligned}$$

Inequality (A.5) similarly follows by using Lemma A.2 and inequality (5.1). \(\square \)

Lemma A.4

Let V be a Poisson random potential of fixed strength. Moreover, let \(\omega \in \widetilde{\Omega }\) and a sequence \((\hat{\mu }_N^{\omega })_{N \in {\mathbb {N}}} \subset {\mathbb {R}}\) be given. If \((\hat{\mu }_N^{\omega })_{N \in {\mathbb {N}}}\) converges to zero, then we have

$$\begin{aligned}&\lim \limits _{\varepsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega }(\mathrm{d} E) \nonumber \\&\qquad = \lim \limits _{\varepsilon \searrow 0} \liminf \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \hat{\mu }_N^{\omega }) \, {\mathcal {N}}_{N,V}^{\omega }(\mathrm{d} E) = \rho _{c,V}. \end{aligned}$$
(A.6)

Proof

This follows directly from Definition (2.16) and Lemma A.3. \(\square \)

Lemma A.5

Let \((V_N)_{N \in {\mathbb {N}}}\) be a Poisson random potential of fixed strength or with a strength that converges to infinity, and \(\omega \in \widetilde{\Omega }\). Then the sequence \(( \mu _{N,V_N}^{\omega } )_{N \in {\mathbb {N}}}\) has at least one accumulation point, and all accumulation points of \(( \mu _{N,V_N}^{\omega } )_{N \in {\mathbb {N}}}\) are smaller than or equal to zero.

Proof

We follow [15, Theorem 4.1] in large parts. For all \(N \in {\mathbb {N}}\) and \(\omega \in \widetilde{\Omega }\), we define \(\Phi _N^{\omega } := |\Lambda _N|^{-1} \sum _{j \in {\mathbb {N}}} \mathrm{e}^{-\beta E_{N,V_N}^{j, \omega }}\). Let \(N \in {\mathbb {N}}\) and \(\omega \in \widetilde{\Omega }\) be arbitrarily given. Using integration by parts and the fact that \({\mathcal {N}}_{N,V_N}^{\mathrm{I},\omega }(E) \le \pi ^{-1} E^{1/2}\) for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \), for all \(E \ge 0\), and all \(N \in {\mathbb {N}}\), we obtain \(0< \Phi _N^{\omega } \le \beta \int _{0}^{\infty } \pi ^{-1} E^{1/2} \mathrm{e}^{-\beta E} \, \mathrm{d} E < \infty .\) Furthermore, we conclude \(\rho \le \Phi _N^{\omega } \mathrm{e}^{\beta \mu _{N,V_N}^{\omega }}/[1 - \mathrm{e}^{-\beta (E_{N,V_N}^{1,\omega } - \mu _{N,V_N}^{\omega })}]\) and \(\beta ^{-1} \ln ( \rho /[\Phi _N^{\omega } + \rho \mathrm{e}^{-\beta E_{N,V_N}^{1,\omega }}]) \le \mu _{N,V_N}^{\omega }\). In addition, \(\mu _{N,V_N}^{\omega }< E_{N,V_N}^{1,\omega }\) for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \) and for all \(N \in {\mathbb {N}}\) and the ground-state energy \(E_{N,V_N}^{1,\omega }\) \({\mathbb {P}}\)-almost surely converges to zero, see Theorem 4.1 and an appropriate version of Lemma B.2 (in combination with the Borel–Cantelli lemma). Thus, the sequence \(( \mu _{N,V_N}^{\omega } )_{N \in {\mathbb {N}}}\) \({\mathbb {P}}\)-almost surely is bounded and accordingly has at least one accumulation point. In addition, this shows that \({\mathbb {P}}\)-almost surely every accumulation point of \(( \mu _{N,V_N}^{\omega } )_{N \in {\mathbb {N}}}\) is equal to or smaller than zero. \(\square \)

Lemma A.6

Let \((V_N)_{N \in {\mathbb {N}}}\) be a Poisson random potential of fixed strength or with a strength that converges to infinity. If \(\rho \ge \rho _{c,V_1}\), then \(\lim _{N \rightarrow \infty } \mu _{N,V_N}^{\omega } = 0\) \({\mathbb {P}}\)-almost surely.

Proof

Let an \(\omega \in \widetilde{\Omega }\) be arbitrarily given. According to Lemma A.5, \(\limsup _{N \rightarrow \infty } \mu _{N,V_N}^{\omega } \le 0\). Suppose \(\liminf _{N \rightarrow \infty } \mu _{N,V_N}^{\omega } < 0\). Then there is a subsequence \((N_m)_{m \in {\mathbb {N}}}\) of \((N)_{N \in {\mathbb {N}}}\) and a constant \(\mu ^{\omega }_{\infty } < 0\) such that \(\lim _{m \rightarrow \infty } \mu _{N_m,V_{N_m}}^{\omega } = \mu ^{\omega }_{\infty }\). Because we have \(\rho = \int _{(0,\infty )} {\mathcal {B}}(E - \mu _{N, V_N}^{\omega }) \, {\mathcal {N}}_{N, V_N}^{\omega }(\mathrm{d} E)\) for all \(N \in {\mathbb {N}}\), by integration by parts, and by Lemma A.1,

$$\begin{aligned} \rho&\le \lim \limits _{m \rightarrow \infty } \lim \limits _{a \rightarrow 0} \lim \limits _{b \rightarrow \infty } \Big [ \int _{[a,b]} {\mathcal {N}}_{N_m, V_{N_m}}^{\mathrm{I}, \omega }(E-) \, ( - {\mathcal {B}}'(E - \mu _{N_m, V_{N_m}}^{\omega })\, \mathrm{d} E \\&\qquad \qquad \qquad \qquad \qquad \qquad + {\mathcal {N}}_{N_m, V_{N_m}}^{\mathrm{I}, \omega }(b+) {\mathcal {B}}(b - \mu _{N_m, V_{N_m}}^{\omega }) \Big ]\\&\le \lim \limits _{m \rightarrow \infty } \lim \limits _{a \rightarrow 0} \lim \limits _{b \rightarrow \infty } \Big [ \int _{[a,b]} {\mathcal {B}}(E - \mu _{N_m, V_{N_m}}^{\omega }) \, {\mathcal {N}}_{N_m, V_1}^{\omega }(\mathrm{d} E) \\&\qquad \qquad \qquad \qquad \qquad \qquad + {\mathcal {N}}_{N_m, V_1}^{\mathrm{I}, \omega }(a-) {\mathcal {B}}(a - \mu _{N_m, V_{N_m}}^{\omega }) \Big ]\\&\le \lim \limits _{m \rightarrow \infty } \int _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }/2) \, {\mathcal {N}}_{N_m, V_1}^{\omega }(\mathrm{d} E) \\&= \int _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }/2) \, {\mathcal {N}}_{\infty ,V_1}(\mathrm{d} E) \\&< \rho _{c,V_1}. \end{aligned}$$

\(\square \)

We finally prove the \({\mathbb {P}}\)-almost sure occurrence of g-BEC for sufficiently large particle densities.

Theorem A.7

Let \((V_N)_{N \in {\mathbb {N}}}\) be a Poisson random potential of fixed strength or with a strength that converges to infinity. Then we have

$$\begin{aligned} {\mathbb {P}} \Bigg ( \lim \limits _{\varepsilon \searrow 0} \liminf \limits _{N \rightarrow \infty } \dfrac{1}{N} \sum \limits _{j \in {\mathbb {N}} : E_{N,V_N}^{j,\omega } \le \varepsilon } n_{N,V_N}^{j,\omega } \ge \dfrac{\rho - \rho _{c,V_1}}{\rho } \Bigg ) = 1. \end{aligned}$$
(A.7)

Proof

Suppose \(\rho \ge \rho _{c,V_1}\). Using Lemmas A.4 and A.6 and proceeding similarly as in the proof of Proposition 5.2, we \({\mathbb {P}}\)-almost surely conclude

$$\begin{aligned}&\lim \limits _{\varepsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \int _{(\varepsilon ,\infty )} {\mathcal {B}}(E - \mu _{N,V_N}^{\omega }) \, \, {\mathcal {N}}_{N,V_N}^{\omega }(\mathrm{d} E) \\&\quad \le \lim \limits _{\varepsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \lim \limits _{M \rightarrow \infty } \Big [ \int _{[\varepsilon ,M]} {\mathcal {N}}_{N,V_N}^{\mathrm{I},\omega }(E-) \, ( - {\mathcal {B}}'(E - \mu _{N,V_N}^{\omega })) \, \mathrm{d}E \\&\qquad \qquad \qquad \qquad \qquad \qquad + {\mathcal {N}}_{N,V_N}^{\mathrm{I},\omega }(M+) \, {\mathcal {B}}(M - \mu _{N,V_N}^{\omega })\Big ] \\&\quad \le \lim \limits _{\varepsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \Big [ \lim \limits _{M \rightarrow \infty } \int _{[\varepsilon ,M]} {\mathcal {B}}(E - \mu _{N,V_N}^{\omega }) \, \, {\mathcal {N}}_{N,V_1}^{\omega }(\mathrm{d} E) + {\mathcal {N}}_{N,V_1}^{\mathrm{I},\omega }(\varepsilon -) \, {\mathcal {B}}(\varepsilon - \mu _{N,V_N}^{\omega })\Big ] \\&\quad = \rho _{c,V_1}. \end{aligned}$$

\(\square \)

Appendix B: Further Properties of the Poisson Point Process on \({\mathbb {R}}\)

In this section, we collect further properties of the Poisson point process on \({\mathbb {R}}\) that we used in Sect. 2. For the first lemma, recall that \(\kappa _N^{\omega }\) is the number of atoms of \({\mathcal {M}}_{\nu }^{\omega }\) within \(\Lambda _N\).

Lemma B.1

For all \(0< \varepsilon < 1/2\) and for all but finitely many \(N \in {\mathbb {N}}\) we have

$$\begin{aligned} {\mathbb {P}} \Big ( (1-L_N^{-\varepsilon }) L_N \le \kappa _N^{\omega } \le (1+L_N^{-\varepsilon }) L_N \Big ) \ge 1 - 2 \mathrm{e}^{ - (\nu /3) L_N^{1-2\varepsilon }}. \end{aligned}$$
(B.1)

Proof

Let \(0< \varepsilon < 1/2\) be arbitrarily given. For all \(N \in {\mathbb {N}}\) we have

$$\begin{aligned} {\mathbb {P}}\left( \kappa _N^{\omega } \ge (1 + L_N^{-\varepsilon }) \nu L_N \right)&= \sum \limits _{m = (1 + L_N^{-\varepsilon }) \nu L_N}^{\infty } \mathrm{e}^{-\nu L_N} \dfrac{(\nu L_N)^m}{m!} \\&\le \mathrm{e}^{\nu L_N[L_N^{-\varepsilon } - (1 + L_N^{-\varepsilon }) \ln (1 + L_N^{-\varepsilon })]}, \end{aligned}$$

see also [23, Sect. 3.3.2]. Next, by using the inequality \((1+x) \ln (1+x) - x \ge x^2/(\frac{2}{3} x + 2)\) for all \(x > -1\), we obtain

$$\begin{aligned} {\mathbb {P}}\left( \kappa _N^{\omega } \ge (1 + L_N^{-\varepsilon }) \nu L_N \right) \le \mathrm{e}^{- \nu L_N L_N^{-2\varepsilon } (\tfrac{2}{3} L_N^{-\varepsilon } + 2)^{-1}} \end{aligned}$$

for all \(N \in {\mathbb {N}}\). Similarly,

$$\begin{aligned} {\mathbb {P}} ( \kappa _N^{\omega } \le (1 - L_N^{-\varepsilon }) \nu L_N ) \le \mathrm{e}^{- \nu L_N L_N^{-2\varepsilon } (-\tfrac{2}{3} L_N^{-\varepsilon } + 2)^{-1}} \end{aligned}$$

for all \(N \in {\mathbb {N}}\) such that \(L_N^{-\varepsilon } < 1\). \(\square \)

Lemma B.2

For all \(\zeta > 0\),

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } {\mathbb {P}} \left( (1-\zeta ) \nu ^{-1} \ln (L_N) \le l_{N,>}^{(1),\omega }\le (1+\zeta ) \nu ^{-1} \ln (L_N) \right) = 1. \end{aligned}$$
(B.2)

Proof

Let \(\zeta > 0\) be arbitrarily given. Since \({\mathbb {P}}\)-almost surely \(\lim _{N \rightarrow \infty } \kappa _N^{\omega } / L_N = \nu \) and \((\hat{l}^{j})_{j \in {\mathbb {Z}} \backslash \{0\}}\) are independent and identically distributed random variables with common probability density \(\nu \mathrm{e}^{-\nu l} \mathbf {1}_{(0,\infty )}(l)\), \(l \in {\mathbb {R}}\), we have

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } {\mathbb {P}} \left( l_{N,>}^{(1),\omega }> (1+\zeta ) \nu ^{-1} \ln (L_N) \right) \le \limsup \limits _{N \rightarrow \infty } \left( 1 - (1 - L_N^{-1-\zeta })^{(1+\varepsilon )\nu L_N} \right) \end{aligned}$$

for any \(\varepsilon > 0\). By using the inequality \(1-x^{-1} \le \ln (x) \le x-1\) for all \(x > 0\), one shows that this probability converges to zero in the limit \(N \rightarrow \infty \). Similarly, one has

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } {\mathbb {P}} \left( l_{N,>}^{(1),\omega }< (1-\zeta ) \nu ^{-1} \ln (L_N) \right) \le \limsup \limits _{N \rightarrow \infty } \big ( 1 - L_N^{-1+\zeta } \big )^{(1-\varepsilon ) \nu L_N} \end{aligned}$$

for any \(0< \varepsilon < 1\) where the right-hand side converges to zero in the limit \(N \rightarrow \infty \) as well. For more details, see also [25, Chap. 3, Lemma 3.4] or [11, Lemma A.5]. \(\square \)

Let \(( \tilde{l}^{j})_{j \in {\mathbb {N}}}\) be a sequence of independent and identically distributed random variables with common probability density \(\nu \mathrm{e}^{-\nu l} \mathbf {1}_{(0,\infty )}(l)\), \(l \in {\mathbb {R}}\). For \({\mathbb {P}}\)-almost all \(\omega \in \Omega \), we define \(\tilde{l}_{k,>}^{(1),\omega }\) and \(\tilde{l}_{k,>}^{(2),\omega }\) as the largest and the second largest element of the set \(\{ \tilde{l}^{j,\omega }\}_{j=1}^{k}\), respectively.

Lemma B.3

For any bounded sequence \((c_N)_{N \in {\mathbb {N}}} \subset [0,\infty )\) and any \(0< \varepsilon < 1/2\) we have

$$\begin{aligned}&\liminf \limits _{N \rightarrow \infty } {\mathbb {P}}\Big ( l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \Big ) \nonumber \\&\quad \ge \liminf \limits _{N \rightarrow \infty } {\mathbb {P}} \Big ( \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(1),\omega } - \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(2),\omega } > c_N \Big ). \end{aligned}$$
(B.3)

Proof

Let a bounded sequence \((c_N)_{N \in {\mathbb {N}}} \subset [0,\infty )\) and an \(0< \varepsilon < 1/2\) be arbitrarily given. For each \(\omega \in \widetilde{\Omega }\) and \(N \in {\mathbb {N}}\), let \(\kappa _N^{(\text {L}),\omega }\) and \(\kappa _N^{(\text {R}),\omega }\) be the number of atoms of \({\mathcal {M}}_{\nu }^{\omega }\) within \((-L_N/2,0)\) and within \((0,L_N/2)\), respectively. Proceeding almost identically as in the proof of Lemma B.1 one can show that

$$\begin{aligned} \lim _{N \rightarrow \infty } {\mathbb {P}} \Big ( \big \{ (1-L_N^{-\varepsilon }) L_N/2 \le \kappa _N^{(\text {L}),\omega }, \kappa _N^{(\text {R}),\omega } \le (1+L_N^{-\varepsilon }) L_N/2 \big \} \Big ) = 1. \end{aligned}$$

For convenience, we define the sets \(J_k:= \{ -k, -k+1, \ldots , k-1, k \}\backslash \{0\}\), \(k \in {\mathbb {N}}\) as well as, for all \(N \in {\mathbb {N}}\) and \(\omega \in \widetilde{\Omega }\),

$$\begin{aligned} \ell _N^{1,\omega }&:= \big \{\hat{l}^{j,\omega } : j \in J_{\lfloor (1 - L_N^{-\varepsilon })L_N/2 \rfloor - 2} \big \}, \\ \ell _N^{2,\omega }&:= \big \{\hat{l}^{j,\omega } : j \in J_{\lceil (1+ L_N^{-\varepsilon }) L_N/2 \rceil } \big \}, \\ \end{aligned}$$

and

$$\begin{aligned} \ell _N^{3,\omega } := \big \{\hat{l}^{j,\omega } : j \in J_{\lceil (1+ L_N^{-\varepsilon }) L_N/2 \rceil } \backslash J_{\lfloor (1 - L_N^{-\varepsilon })L_N/2 \rfloor - 2} \big \}. \end{aligned}$$

Using the inequality \(-x/(1-x) \le \ln (1-x) \le -x\) for all \(0<x<1\) we have

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } {\mathbb {P}} \Big ( \max (\ell _N^{3,\omega }) \le (1 - \varepsilon /2) \nu ^{-1} \ln (L_N) \Big ) = \lim \limits _{N \rightarrow \infty } (1 -L_N^{-1+\varepsilon /2})^{2\nu L_N^{1-\varepsilon }} = 1 \end{aligned}$$

and

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } {\mathbb {P}} \Big (\max (\ell _N^{1,\omega }) \ge (1-\varepsilon /3)\nu ^{-1} \ln (L_N) \Big ) = 1. \end{aligned}$$

Furthermore, the two outer intervals within \(\Lambda _N\) and the interval that contains the zero are relatively small, that is, \(\lim \limits _{N \rightarrow \infty } {\mathbb {P}}(\Omega _N^{(\text {R})} \cap \Omega _N^{(\text {L})} \cap \Omega _N^{(0)}) = 1\) where \(\Omega _N^{(\text {R})} := \{ \omega \in \widetilde{\Omega } : |I_N^{(\text {R}),\omega }| \le (2\nu )^{-1} \ln (L_N) \}\), \(\Omega _N^{(\text {L})} := \{ \omega \in \widetilde{\Omega } : |I_N^{(\text {L}),\omega }| \le (2\nu )^{-1} \ln (L_N) \}\), and \(\Omega _N^{(0)} := \{ \omega \in \widetilde{\Omega } : |I_N^{0,\omega }| \le (2\nu )^{-1} \ln (L_N) \}\) with \(I_N^{(\text {R}),\omega } := I_N^{j_N^{\text {max},\omega },\omega }\), \(j_N^{\text {max},\omega } := \max \{ j \in {\mathbb {Z}}: I_N^{j,\omega } \ne \emptyset \}\), and \(I_N^{(\text {L}),\omega } := I_N^{j_N^{\text {min},\omega },\omega }\), \(j_N^{\text {min},\omega } := \min \{ j \in {\mathbb {Z}} : I_N^{j,\omega } \ne \emptyset \}\) for all \(N \in {\mathbb {N}}\) and all \(\omega \in \widetilde{\Omega }\). Also, for any \(\omega \in \widetilde{\Omega }\) and any \(2 \le k \in {\mathbb {N}}\) the second-largest element of the set \(\{ \hat{l}^{j,\omega } \in J_k\}\) is given by \(\max \big ( \{ \hat{l}^{j,\omega } \in J_k \} \backslash \big \{ \max ( \{ \hat{l}^{j,\omega } \in J_k \} ) \big \} \big )\). For convenience, we define for all \(N \in {\mathbb {N}}\)

$$\begin{aligned} \widehat{\Omega }_N := \Omega _N^{(\text {R})}&\cap \Omega _N^{(\text {L})} \cap \Omega _N^{(0)} \\&\cap \big \{ (1-L_N^{-\varepsilon })L_N/2 \le \kappa _N^{(\text {L}),\omega }, \kappa _N^{(\text {R}),\omega } \le (1+L_N^{-\varepsilon }) L_N/2 \big \}. \end{aligned}$$

Let \(N \in {\mathbb {N}}\) be given. We have

$$\begin{aligned} {\mathbb {P}} \Big ( l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \Big )&\ge {\mathbb {P}} \Big ( \big \{ l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \big \} \cap \widehat{\Omega }_N \\&\quad \cap \big \{ \max (\ell _N^{3,\omega } ) \le (1 - \varepsilon /2) \nu ^{-1} \ln (L_N) \big \} \\&\quad \cap \big \{ \max (\ell _N^{1,\omega } ) \ge (1 - \varepsilon /3) \nu ^{-1} \ln (L_N) \big \} \Big ). \end{aligned}$$

Since the second largest element of the set \(\ell _N^{2,\omega }\) is either in the set \(\ell _N^{1,\omega }\) or in the set \(\ell _N^{3,\omega }\), we conclude

$$\begin{aligned}&{\mathbb {P}} \Big ( l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \Big ) \\&\quad \ge {\mathbb {P}} \Big ( \Big \{ \max ( \ell _N^{1,\omega } ) - \max \Big ( \ell _N^{1,\omega } \backslash \big \{ \max ( \ell _N^{1,\omega } ) \big \} \Big )> c_N \Big \} \\&\qquad \cap \Big \{ \max \Big ( \ell _N^{2,\omega } \backslash \big \{ \max \big ( \ell _N^{2,\omega } \big ) \big \} \Big ) \in \ell _N^{1,\omega } \Big \} \cap \widehat{\Omega }_N \\&\qquad \cap \big \{ \max \ell _N^{3,\omega } \le (1 - \varepsilon /2) \nu ^{-1} \ln (L_N) \big \} \\&\qquad \cap \big \{ \max \ell _N^{1,\omega } \ge (1 - \varepsilon /3) \nu ^{-1} \ln (L_N) \big \} \Big ) \\&\qquad + {\mathbb {P}} \Big ( \Big \{ \max (\ell _N^{1,\omega }) - \max \Big ( \ell _N^{2,\omega } \backslash \big \{ \max ( \ell _N^{1,\omega } ) \big \} \Big ) > c_N \Big \} \\&\qquad \cap \Big \{ \max \Big ( \ell _N^{2,\omega } \backslash \big \{ \max \big ( \ell _N^{2,\omega } \big ) \big \} \Big ) \in \ell _N^{3,\omega } \Big \} \cap \widehat{\Omega }_N \\&\qquad \cap \big \{ \max \ell _N^{3,\omega } \le (1 - \varepsilon /2) \nu ^{-1} \ln (L_N) \big \} \\&\qquad \cap \big \{ \max \ell _N^{1,\omega } \ge (1 - \varepsilon /3) \nu ^{-1} \ln (L_N) \big \} \Big ). \end{aligned}$$

Furthermore, since \({\mathbb {P}}(A \cap B) \ge {\mathbb {P}}(A) + {\mathbb {P}}(B) - 1\) for any events \(A,B \subset \Omega \),

$$\begin{aligned}&{\mathbb {P}} \Big ( l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \Big ) \\&\quad \ge {\mathbb {P}} \Big ( \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(1),\omega } - \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(2),\omega } > c_N \Big ) \\&\qquad + {\mathbb {P}} \Big ( \max \Big ( \ell _N^{2,\omega } \backslash \big \{ \max \big ( \ell _N^{2,\omega } \big ) \big \} \Big ) \in \ell _N^{1,\omega } \Big \} \Big ) - 1\\&\qquad + {\mathbb {P}} \Big ( \max \Big ( \ell _N^{2,\omega } \backslash \big \{ \max \big ( \ell _N^{2,\omega } \big ) \big \} \Big ) \in \ell _N^{3,\omega } \Big ) + 2 {\mathbb {P}} ( \widehat{\Omega }_N ) - 2\\&\qquad + 2 {\mathbb {P}} \big ( \max \ell _N^{3,\omega } \le (1 - \varepsilon /2) \nu ^{-1} \ln (L_N) \big ) - 2\\&\qquad + 2 {\mathbb {P}} \big ( \max \ell _N^{1,\omega } \ge (1 - \varepsilon /3) \nu ^{-1} \ln (L_N) \big \} \big ) - 2 \end{aligned}$$

for all but finitely many \(N \in {\mathbb {N}}\). Lastly, by also using Lemmata B.1 and B.2 as well as the fact that \({\mathbb {P}}(A) + {\mathbb {P}}(A^c) =1\) for any event \(A \subset \Omega \),

$$\begin{aligned}&\liminf \limits _{N \rightarrow \infty } {\mathbb {P}} \Big ( l_{N,>}^{(1),\omega }- l_{N,>}^{(2),\omega }> c_N \Big ) \\&\quad \ge \liminf \limits _{N \rightarrow \infty } {\mathbb {P}} \Big ( \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(1),\omega } - \tilde{l}_{\lfloor (1 - L_N^{-\varepsilon }) \nu L_N \rfloor - 2,>}^{(2),\omega } > c_N \Big ). \end{aligned}$$

\(\square \)

Appendix C: The Luttinger–Sy Model

In Sects. 2 and 3 we mentioned the Luttinger–Sy model. For the convenience of the reader, we provide more details regarding these models in this section.

The Luttinger–Sy model is a system of noninteracting bosonic particles corresponding to the sequence of one-particle random Schrödinger operators \((H_{N,\mathrm{LS}})_{N \in {\mathbb {N}}}\) that are defined, for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \) and all \(N \in {\mathbb {N}}\), as the strong resolvent limit \(\gamma \rightarrow \infty \) of the self-adjoint operators defined by the quadratic form \(q^{\omega }_{N,\gamma }\), see (C.3). Informally, it consists of noninteracting bosons on the real line in a Poisson random potential on \({\mathbb {R}}\) with the single-site potential \(\gamma \delta \) where \(\delta \) is the Dirac delta function and \(\gamma = \infty \) [14, Sect. 2]. \({\mathbb {P}}\)-almost surely, the one-particle Schrödinger operator \(H_{N,\mathrm{LS}}^{\omega }\) has, for each \(N \in {\mathbb {N}}\), a purely discrete spectrum. We denote its eigenvalues, arranged in increasing order and each eigenvalue repeated according to its multiplicity, by \(E_{N,\mathrm{LS}}^{j,\omega }\), \(j \in {\mathbb {N}}\). The sequence of the integrated densities of states \(({\mathcal {N}}_{N, \mathrm{LS}}^{\mathrm{I},\omega })_{N \in {\mathbb {N}}}\) of the Luttinger–Sy model \({\mathbb {P}}\)-almost surely converges pointwise to the nonrandom limiting integrated density of states

$$\begin{aligned} {\mathcal {N}}_{\infty , \mathrm{LS}}^{\mathrm{I}} : {\mathbb {R}} \rightarrow [0,\infty ), \ E \mapsto {\mathcal {N}}_{\infty , \mathrm{LS}}^{\mathrm{I}}(E) = \nu \dfrac{\mathrm{e}^{-\nu \pi E^{-1/2}}}{1 - \mathrm{e}^{-\nu \pi E^{-1/2}}} \mathbf {1}_{(0,\infty )}(E). \end{aligned}$$
(C.1)

In addition, the critical density \(\rho _{c,\mathrm{LS}} = \int _{{\mathbb {R}}} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty ,\mathrm{LS}}(\mathrm{d} E)\) is finite, for any \(\beta > 0\).

The Luttinger–Sy model of finite strength is a one-dimensional noninteracting Bose gas in a Poisson random potential on \({\mathbb {R}}\) with, informally, a single-site potential

$$\begin{aligned} u : {\mathbb {R}} \rightarrow {\mathbb {R}}, \ x \mapsto u(x) := \gamma \delta (x) \end{aligned}$$
(C.2)

where \(\gamma > 0\) and \(\delta \) is the Dirac delta function. Rigorously, the corresponding one-particle Schrödinger operator \(H_{N,\gamma }^{\omega }\) is, for all \(N \in {\mathbb {N}}\) and \({\mathbb {P}}\)-almost all \(\omega \in \Omega \), the self-adjoint operator on \(\mathrm{L}^2(\Lambda _N)\) that is uniquely defined via the quadratic form

$$\begin{aligned} q^{\omega }_{N,\gamma }: \mathrm{H}^1_0(\Lambda _N) \times \mathrm{H}^1_0(\Lambda _N)&\rightarrow {\mathbb {C}} \nonumber \\ (\varphi ,\psi )&\mapsto \int _{\Lambda _N}\overline{\varphi ^{\prime }(x)}\psi ^{\prime }(x) \, \mathrm{d}x + \gamma \sum _{j \in {\mathbb {Z}}: \, \hat{x}_j^{\omega } \in \Lambda _N}\overline{\varphi (\hat{x}_j^{\omega })} \psi (\hat{x}_j^{\omega }) \end{aligned}$$
(C.3)

on \(\mathrm{L}^2(\Lambda _N)\). For more details regarding this model, see, e.g., [19, pp. 146–149] and [10].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechmann, M. On Bose–Einstein Condensation in One-Dimensional Noninteracting Bose Gases in the Presence of Soft Poisson Obstacles. J Stat Phys 189, 42 (2022). https://doi.org/10.1007/s10955-022-03001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-03001-6

Keywords

Mathematics Subject Classification

Navigation