Skip to main content
Log in

Superdiffusive Heat Transport in a Class of Deterministic One-dimensional Many-Particle Lorentz Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study heat transport in a one-dimensional chain of a finite number N of identical cells, coupled at its boundaries to stochastic particle reservoirs. At the center of each cell, tracer particles collide with fixed scatterers, exchanging momentum. In a recent paper (Collet and Eckmann in Commun. Math. Phys. 287:1015, 2009), a spatially continuous version of this model was derived in a scaling regime where the scattering probability of the tracers is γ∼1/N, corresponding to the Grad limit. A Boltzmann-like equation describing the transport of heat was obtained. In this paper, we show numerically that the Boltzmann description obtained in Collet and Eckmann (Commun. Math. Phys. 287:1015, 2009) is indeed a bona fide limit of the particle model. Furthermore, we study the heat transport of the model when the scattering probability is 1, corresponding to deterministic dynamics. Thought as a lattice model in which particles jump between different scatterers the motion is persistent, with a persistence probability determined by the mass ratio among particles and scatterers, and a waiting time probability distribution with algebraic tails. We find that the heat and particle currents scale slower than 1/N, implying that this model exhibits anomalous heat and particle transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collet, P., Eckmann, J.-P.: A model of heat conduction. Commun. Math. Phys. 287, 1015 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics, pp. 128–150. Imp. Coll. Press, London (2000)

    Google Scholar 

  3. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Dhar, A.: Heat transport in low dimensional systems. Adv. Phys. 57, 457 (2009)

    Article  ADS  Google Scholar 

  5. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073 (1967)

    Article  ADS  Google Scholar 

  6. Eckmann, J.-P., Pillet, C.A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bricmont, J., Kupiainen, A.: Towards a derivation of Fourier’s law for coupled anharmonic oscillators. Commun. Math. Phys. 274, 555 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Mejia-Monasterio, C., Larralde, H., Leyvraz, F.: Coupled normal heat and matter transport in a simple model system. Phys. Rev. Lett. 86, 5417 (2001)

    Article  ADS  Google Scholar 

  9. Eckmann, J.-P., Young, L.-S.: Nonequilibrium energy profiles for a class of 1-d models. Commun. Math. Phys. 262, 237 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Grosfils, P., Boon, J.P., Cohen, E.G.D., Bunimovich, L.A.: Propagation and organization in lattice random media. J. Stat. Phys. 97, 575–608 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Larralde, H., Leyvraz, F., Mejia-Monasterio, C.: Transport properties of a modified Lorentz gas. J. Stat. Phys. 113, 197 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckmann, J.-P., Mejia-Monasterio, C., Zabey, E.: Memory effects in nonequilibrium transport for deterministic Hamiltonian systems. J. Stat. Phys. 123, 1339 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Bunimovich, L.A., Khlabystova, M.A.: One-dimensional Lorentz gas with rotating scatterers: exact solutions. J. Stat. Phys. 112, 1207 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tehver, R., Toigo, F., Koplik, J., Banavar, J.R.: Thermal walls in computer simulations. Phys. Rev. E 57, R17 (1998)

    Article  ADS  Google Scholar 

  15. Collet, P., Ferrero, P.: Some limit ratio theorem related to a real endomorphism in case of a neutral fixed point. Ann. Inst. Henri Poincaré 52, 283 (1990)

    MATH  MathSciNet  Google Scholar 

  16. Korabel, N., Barkai, E.: Pesin-type identity for intermittent dynamics with a zero Lyaponov exponent. Phys. Rev. Lett. 102(5), 050601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dhar, A., Dhar, D.: Absence of local thermal equilibrium in two models of heat conduction. Phys. Rev. Lett. 82, 480 (1999)

    Article  ADS  Google Scholar 

  18. Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311, 381 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Giardiná, C., Livi, R., Politi, A., Vassalli, M.: Finite thermal conductivity in 1d lattices. Phys. Rev. Lett. 84, 2144 (2000)

    Article  ADS  Google Scholar 

  21. Gendelman, O.V., Savin, A.V.: Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction. Phys. Rev. Lett. 84, 2381 (2000)

    Article  ADS  Google Scholar 

  22. Denisov, S., Klafter, J., Urbakh, M.: Dynamical heat channels. Phys. Rev. Lett. 91, 194301 (2003)

    Article  ADS  Google Scholar 

  23. Zaburdaev, V.Y.: Random walk model with waiting times depending on the preceding jump length. J. Stat. Phys. 123, 871 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Eckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, P., Eckmann, JP. & Mejía-Monasterio, C. Superdiffusive Heat Transport in a Class of Deterministic One-dimensional Many-Particle Lorentz Gases. J Stat Phys 136, 331–347 (2009). https://doi.org/10.1007/s10955-009-9783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9783-4

Keywords

Navigation