Skip to main content
Log in

Multiple Intersection Exponents for Planar Brownian Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let p≥2, n 1⋅⋅⋅n p be positive integers and \(B_{1}^{1},\ldots,B_{n_{1}}^{1};\ldots;B_{1}^{p},\ldots,B_{n_{p}}^{p}\) be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ς p (n 1,…,n p ), as the exponential rate of decay of the probability that the packets \(\bigcup_{j=1}^{n_{i}}B_{j}^{i}[0,t^{2}]\) , i=1,…,p, have no joint intersection. The case p=2 is well-known and, following two decades of numerical and mathematical activity, Lawler et al. (Acta Math. 187:275–308, 2001) rigorously identified precise values for these exponents. The exponents have not been investigated so far for p>2. We present an extensive mathematical and numerical study, leading to an exact formula in the case n 1=1, n 2=2, and several interesting conjectures for other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burdzy, K., Lawler, G., Polaski, T.: On the critical exponent for random walk intersections. J. Stat. Phys. 56, 1–12 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268, 1–38 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Camia, F., Newman, C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139, 473–519 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cardy, J.: Critical percolation in finite geometries. J. Phys. A 25, L201–L206 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Duplantier, B.: Random walks and quantum gravity in two dimensions. Phys. Rev. Lett. 81, 5489–5492 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Duplantier, B., Kwon, K.-H.: Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61, 2514–2517 (1988)

    Article  ADS  Google Scholar 

  7. Duplantier, B., Sheffield, S.: Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009)

    Article  ADS  Google Scholar 

  8. Klenke, A., Mörters, P.: The multifractal spectrum of Brownian intersection local time. Ann. Probab. 33, 1255–1301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley, Boston (2005)

    MATH  Google Scholar 

  10. Lawler, G.F.: Intersections of random walks with random sets. Isr. J. Math. 65, 113–132 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lawler, G.F.: Intersections of Random Ealks. Birkhäuser, Boston (1991)

    Google Scholar 

  12. Lawler, G.F.: Nonintersecting planar Brownian motions. Math. Phys. Electron. J. 1, 1–35 (1995). Paper 4

    MathSciNet  Google Scholar 

  13. Lawler, G.F.: Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab. 1, 1–20 (1996). Paper 2

    MATH  MathSciNet  Google Scholar 

  14. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187, 237–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents II: Plane exponents. Acta Math. 187, 275–308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents III: Two-sided exponents. Ann. Inst. Henri Poincaré 38, 109–123 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Lawler, G.F., Schramm, O., Werner, W.: Analyticity of intersection exponents for planar Brownian motion. Acta Math. 189, 179–201 (2002)

    Article  MathSciNet  Google Scholar 

  18. Leath, P.L., Reich, G.R.: Scaling form for percolation cluster sizes and perimeters. J. Phys. C 11, 4017–4036 (1978)

    Article  ADS  Google Scholar 

  19. Lehmann, E.L.: Theory of Point Estimation. Wiley, New York (1983)

    MATH  Google Scholar 

  20. Li, B., Sokal, A.: High-precision Monte Carlo test of the conformal-invariance predictions for two-dimensional mutually avoiding walks. J. Stat. Phys. 61, 723–748 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  22. Mörters, P., Shieh, N.-R.: The exact packing measure of Brownian double points. Probab. Theory Relat. Fields 143, 113–136 (2009)

    Article  MATH  Google Scholar 

  23. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. arXiv:0807.1036 (2008)

  24. Saleur, B., Duplantier, B.: Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett. 58, 2325–2328 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  25. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C.R. Acad. Sci. Paris, Ser. I, Math. 333, 239–244 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  26. Voss, R.F.: The fractal dimension of percolation cluster hulls. J. Phys. A 17, L373–L377 (1984)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Klenke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenke, A., Mörters, P. Multiple Intersection Exponents for Planar Brownian Motion. J Stat Phys 136, 373–397 (2009). https://doi.org/10.1007/s10955-009-9780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9780-7

Keywords

Navigation