Skip to main content
Log in

How Model Sets Can Be Determined by Their Two-point and Three-point Correlations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that real model sets with real internal spaces are determined, up to translation and changes of density 0, by their 2- and 3-point correlations. We also show that there exist pairs of real (even 1D) aperiodic model sets with internal spaces that are products of real spaces and finite cyclic groups whose 2- and 3-point correlations are identical but which are not related by either translation or inversion of their windows. All these examples are pure point diffractive.

Placed in the context of ergodic uniformly discrete point processes, the result is that real point processes of model sets based on real internal windows are determined by their second and third moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle’s Journal) 573, 61–94 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baake, M., Lenz, D., Moody, R.V.: Characterization of model sets by dynamical systems. Ergod. Theory Dyn. Syst. 27, 341–382 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellissard, J., Hermann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. In: Baake, M.B., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13, pp. 207–259. AMS, Providence (2000)

    Google Scholar 

  4. Bourbaki, N.: General Topology. Springer, Berlin (1989), Chaps. 1–4

    Google Scholar 

  5. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988)

    MATH  Google Scholar 

  6. Deng, X., Moody, R.: Dworkin’s argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys. 58, 506–541 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Deng, X., Moody, R.: Weighted model sets and their higher point-correlations. Preprint, arXiv:0904.4552

  8. Fell, J.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Am. Math. Soc. 13, 472–476 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gouéré, J.-B.: Quasicrystals and almost periodicity. Commun. Math. Phys. 255(3), 651–681 (2005). math-ph/0212012

    Article  Google Scholar 

  10. Grimm, U., Baake, M.: Homometric model sets and window covariograms. Z. Kristallogr. 222, 54–58 (2007). arXiv:0808.0094

    Article  Google Scholar 

  11. Grimm, U., Baake, M.: Homometric point sets and inverse problems. Z. Kristallogr. 223, 777–781 (2008)

    Article  Google Scholar 

  12. Grünbaum, F.J., Moore, C.C.: The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets. Acta Cryst. A 51, 310–323 (1995)

    Article  Google Scholar 

  13. Hof, A.: Diffraction by aperiodic structures. In: Moody, R.V. (ed.) The Mathematics of Long-Range Order Aperiodic Order. NATO-ASI Series C, vol. 489. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  14. Jaming, P., Koluntzakis, M.N.: Reconstruction of functions from their triple correlations. N.Y. J. Math. 9, 149–164 (2003)

    MATH  Google Scholar 

  15. Kelly, J.L.: General Topology. Van Nostrand, Princeton (1955)

    Google Scholar 

  16. Lee, J.Y., Moody, R.V.: A characterization of model multi-colour sets. Ann. Henri Poincaré 7, 125–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lenz, D., Moody, R.V.: Extinctions and correlations for uniformly discrete point processes with pure point dynamical spectra. Commun. Math. Phys. (in press). arXiv:0902.0567

  18. Mermin, D.: The symmetry of crystals. In: Moody, R.V. (ed.) The Mathematics of Long-Range Aperiodic Order. NATO-ASI Series C, vol. 489, pp. 377–401. Kluwer, Dordrecht (1997)

    Google Scholar 

  19. Moody, R.V.: Model sets and their duals. In: Moody, R.V. (ed.) The Mathematics of Long-Range Aperiodic Order. NATO ASI Series C, vol. 489, pp. 403–441. Kluwer, Dordrecht (1997)

    Google Scholar 

  20. Moody, R.V.: Uniform distribution in model sets. Can. Math. Bull. 45(1), 123–130 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Moody, R.V.: Recent developments in the mathematics of diffraction. Z. Kristallogr. 223, 795–800 (2008)

    Article  Google Scholar 

  22. Patterson, L.: Ambiguities in the X-ray analysis of crystal structures. Phys. Rev. 65, 195–201 (1944)

    Article  ADS  Google Scholar 

  23. Radin, C., Wolf, M.: Space tilings and local isomorphism. Geom. Dedic. 42, 355–360 (1992)

    Article  MATH  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic Press, San Diego (1980) (Revised and enlarged edition)

    MATH  Google Scholar 

  25. Schlottmann, M.: Generalized model sets and dynamical systems. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13, pp. 143–159. AMS, Providence (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Moody.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Moody, R.V. How Model Sets Can Be Determined by Their Two-point and Three-point Correlations. J Stat Phys 135, 621–637 (2009). https://doi.org/10.1007/s10955-009-9742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9742-0

Keywords

Navigation