Skip to main content
Log in

Quasicrystals and Almost Periodicity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give in this paper topological and dynamical characterizations of mathematical quasicrystals. Let denote the space of uniformly discrete subsets of the Euclidean space. Let denote the elements of that admit an autocorrelation measure. A Patterson set is an element of such that the Fourier transform of its autocorrelation measure is discrete. Patterson sets are mathematical idealizations of quasicrystals. We prove that S is a Patterson set if and only if S is almost periodic in (,), where denotes the Besicovitch topology. Let χ be an ergodic random element of . We prove that χ is almost surely a Patterson set if and only if the dynamical system has a discrete spectrum. As an illustration, we study deformed model sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baake, M., Lenz, D.: Deformation of delone dynamical systems and pure point diffraction. To appear in Journal of Fourie Analysis and Applications

  2. Baake, M., Moody, R.V. (eds.): Directions in mathematical quasicrystals, Volume 13 of CRM Monograph Series. Providence, RI: American Mathematical Society, 2000

  3. Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. für die Reine and Angewandte Math. In press

  4. Baake, M., Moody,R.V., Pleasants, P.A.B.: Diffraction from visible lattice points and kth power free integers. Selected papers in honor of Ludwig Danzer, Discrete Math. 221(1–3), 3–42 (2000)

  5. Bernuau, G., Duneau, M.: Fourier analysis of deformed model sets. In: Directions in mathematical quasicrystals, Providence, RI: Am. Math. Soc. 2000, pp. 43–60

  6. Besicovitch, A.S., Bohr, H.: Almost periodicity and general trigonometric series. Acta Math. 57, 203–292 (1931)

    Google Scholar 

  7. Dworkin, S.: Spectral theory and x-ray diffraction. J. Math. Phys. 34(7), 2965–2967 (1993)

    Google Scholar 

  8. Eberlein, W.F.: A note on Fourier-Stieltjes transforms. Proc. Am. Math. Soc. 6, 310–312, (1955)

    Google Scholar 

  9. de Lamadrid, G.J., Argabright, L.N.: Almost periodic measures. Mem. Am. Math. Soc. 85(428):vi+219 (1990)

    Google Scholar 

  10. Gouéré, J.B.: Diffraction et mesure de Palm des processus ponctuels. C. R. Math. Acad. Sci. Paris 336(1), 57–62 (2003)

    Google Scholar 

  11. Hewitt, E.: Representation of functions as absolutely convergent Fourier-Stieltjes transforms. Proc. Am. Math. Soc. 4, 663–670 (1953)

    Google Scholar 

  12. Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169(1), 25–43 (1995)

    Google Scholar 

  13. Katz, A.: Introduction aux quasicristaux. Séminaire Bourbaki. Vol. 1997/98, Astérisque (252):Exp. No. 838(3), 81–103 (1998)

    Google Scholar 

  14. Katznelson, Y.: An introduction to harmonic analysis. Corrected edition, New York: Dover Publications Inc., 1976

  15. Lagarias, J.C.: Mathematical quasicrystals and the problem of diffraction. In: Directions in mathematical quasicrystals, Volume 13 of CRM Monogr. Ser., Providence, RI: Am. Math. Soc., 2000, pp. 61–93

  16. Lagarias, J.C., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergodic Theory Dynam. Systems 23(3), 831–867 (2003)

    Google Scholar 

  17. Lee, J.-Y., Moody, R.V., Solomyak, B.: Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5), 1003–1018 (2002)

    Google Scholar 

  18. Lee, J.-Y., Moody, R.V., Solomyak, B.: Consequences of pure point diffraction spectra for multiset substitution systems. Discrete Comput. Geom. 29(4), 525–560 (2003)

    Google Scholar 

  19. Matheron, G.: Random sets and integral geometry. With a foreword by Geoffrey S. Watson, Wiley Series in Probability and Mathematical Statistics, New York-London-Sydney: John Wiley & Sons, 1975

  20. Møller, J.: Lectures on random Voronoi tessellations. New York: Springer-Verlag, 1994

  21. Moody, R.V. (ed.): The mathematics of long-range aperiodic order, Vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Dordrecht: Kluwer Academic Publishers Group, 1997

  22. Moody, R.V.: Uniform distribution in model sets. Canad. Math. Bull. 45(1), 123–130 (2002)

    Google Scholar 

  23. Moody, R.V.: Mathematical quasicrystals: A tale of two topologies. To appear in the Proceedings of the International Congress of Mathematical Physics, Lisbon, 2003, World Scientific Publishing Company

  24. Moody, R.V., Strungaru, N.: Point sets and dynamical systems in the autocorrelation topology. Canad. Math. Bull. 47(1), 82–99 (2004)

    Google Scholar 

  25. Neveu, J.: Processus ponctuels. In: École d’Été de Probabilités de Saint-Flour, VI—1976, Lecture Notes in Math., Vol. 598. Berlin: Springer-Verlag, 1977, pp. 249–445

  26. Queffélec, M.: Substitution dynamical systems–-spectral analysis, Volume 1294 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1987

  27. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975

  28. Rudin, W.: Real and complex analysis: Third edition, New York: McGraw-Hill Book Co., 1987

  29. Rudin, W.: Fourier analysis on groups. Reprint of the 1962 original, A Wiley-Interscience Publication, New York: John Wiley & Sons Inc., 1990

  30. Schlottmann, M.: Generalized model sets and dynamical systems. In: Directions in mathematical quasicrystals, Providence, RI: Am. Math. Soc., 2000, pp. 143–159

  31. Segal, I.E.: The class of functions which are absolutely convergent Fourier transforms. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars B) 157–161 (1950)

  32. Senechal, M.: Quasicrystals and geometry. Cambridge: Cambridge University Press, 1995

  33. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  Google Scholar 

  34. Solomyak, B.: Dynamics of self-similar tilings. Ergodic Theory Dynam. Systems 17(3), 695–738 (1997)

    Google Scholar 

  35. Solomyak, B.: Spectrum of dynamical systems arising from Delone sets. In: Quasicrystals and discrete geometry (Toronto, ON, 1995), Providence, RI: Am. Math. Soc., 1998, pp. 265–275

  36. Wiener, N.: The ergodic theorem. Duke Math. 5, 1–18 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Gouéré.

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouéré, JB. Quasicrystals and Almost Periodicity. Commun. Math. Phys. 255, 655–681 (2005). https://doi.org/10.1007/s00220-004-1271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1271-8

Keywords

Navigation