Skip to main content
Log in

Classical Capacity of Quantum Channels with General Markovian Correlated Noise

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The classical capacity of a quantum channel with arbitrary Markovian correlated noise is evaluated. For the general case of a channel with long-term memory, which corresponds to a Markov chain which does not converge to equilibrium, the capacity is expressed in terms of the communicating classes of the Markov chain. For an irreducible and aperiodic Markov chain, the channel is forgetful, and one retrieves the known expression (Kretschmann and Werner in Phys. Rev. A 72:062323, 2005) for the capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R.: The weak capacity of averaged channels. Z. Wahrscheinlichk. Verwandte Geb. 11, 61–73 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bjelaković, I., Boche, H.: Ergodic classical-quantum channels: structure and coding theorems. quant-ph/0609229

  3. Bjelaković, I., Boche, H.: Classical capacities of compound and averaged quantum channels. arXiv:0710.3027

  4. Bowen, G., Mancini, S.: Quantum channels with a finite memory. Phys. Rev. A 69, 01236 (2004)

    Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  6. Datta, N., Dorlas, T.C.: A quantum version of Feinstein’s lemma and its application to channel coding. In: Proc. of Int. Symp. Inf. Theor. ISIT 2006, Seattle, pp. 441–445 (2006)

  7. Datta, N., Dorlas, T.C.: The coding theorem for a class of channels with long-term memory. J. Phys. A, Math. Theory 40, 8147–8164 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Feinstein, A.: A new basic theorem of information theory. IRE Trans. PGIT 4, 2–22 (1954)

    MathSciNet  Google Scholar 

  9. Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49, 1753–1768 (2003)

    Article  MathSciNet  Google Scholar 

  10. Khinchin, A.I.: Mathematical Foundations of Information Theory. Part II: On the Fundamental Theorems of Information Theory. Dover, New York (1957), Chap. IV

    Google Scholar 

  11. Helstrøm, C.W.: Quantum Detection and Estimation Theory. Mathematics in Science and Engineering, vol. 123. Academic Press, London (1976)

    Google Scholar 

  12. Hiai, F., Petz, D.: The proper formula for the relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 257–281 (1991)

    Article  MathSciNet  Google Scholar 

  13. Holevo, A.S.: The capacity of a quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jacobs, K.: Almost periodic channels. In: Colloqium on Comb. Methods in Prob. Theory. Aarhus (1962)

  15. Kretschmann, D., Werner, R.F.: Quantum channels with memory. Phys. Rev. A 72, 062323 (2005). quant-ph/0502106

    Article  ADS  Google Scholar 

  16. McMillan, B.: The basic theorems of information theory. Ann. Math. Stat. 24, 196–219 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  17. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    MATH  Google Scholar 

  21. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)

    Article  ADS  Google Scholar 

  22. Shannon, C.E.: A mathematical theory of communication. Part I. Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. Part II. Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  24. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45, 2481–2485 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Datta.

Additional information

T. Dorlas is on leave from the Dublin Institute of Advanced Studies, School of Theoretical Physics, 10 Burlington Road, Dublin 4, Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, N., Dorlas, T. Classical Capacity of Quantum Channels with General Markovian Correlated Noise. J Stat Phys 134, 1173–1195 (2009). https://doi.org/10.1007/s10955-009-9726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9726-0

Keywords

Navigation