Skip to main content
Log in

Ground State and Resonances in the Standard Model of the Non-Relativistic QED

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou Salem, W., Faupin, J., Fröhlich, J., Sigal, I.M.: On theory of resonances in non-relativistic QED. Adv. Appl. Math. (2009, to appear)

  2. Amour, L., Grbert, B., Guillot, J.-C.: The dressed mobile atoms and ions. J. Math. Pures Appl. (9) 86(3), 177–200 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Arai, A.: Mathematical analysis of a model in relativistic quantum electrodynamics. In: Applications of Renormalization Group Methods in Mathematical Sciences, Kyoto (1999) (in Japanese)

  4. Arai, A., Hirokawa, M.: Ground states of a general class of quantum field Hamiltonians. Rev. Math. Phys. 12(8), 1085–1135 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bach, V., Chen, T., Fröhlich, J., Sigal, I.M.: Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal. 203, 44–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bach, V., Chen, T., Fröhlich, J., Sigal, I.M.: The renormalized electron mass in non-relativistic quantum electrodynamics. J. Funct. Anal. 243, 426–535 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bach, V., Fröhlich, J., Pizzo, A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145–165 (2006)

    Article  MATH  ADS  Google Scholar 

  8. Bach, V., Fröhlich, J., Pizzo, A.: An infrared-finite algorithm for Rayleigh scattering amplitudes, and Bohr’s frequency condition. Commun. Math. Phys. 274(2), 457–486 (2007)

    Article  MATH  ADS  Google Scholar 

  9. Bach, V., Fröhlich, J., Pizzo, A.: Infrared-Finite Algorithms in QED II. The Expansion of the Groundstate of an Atom Interacting with the Quantized Radiation Field, mp_arc

  10. Bach, V., Fröhlich, J., Sigal, I.M.: Mathematical theory of non-relativistic matter and radiation. Lett. Math. Phys. 34, 183–201 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined non-relativistic particles. Adv. Math. 137, 299–395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137, 205–298 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bach, V., Fröhlich, J., Sigal, I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999)

    Article  MATH  ADS  Google Scholar 

  14. Bach, V., Fröhlich, J., Sigal, I.M., Soffer, A.: Positive commutators and spectrum of Pauli-Fierz Hamiltonian of atoms and molecules. Commun. Math. Phys. 207(3), 557–587 (1999)

    Article  MATH  ADS  Google Scholar 

  15. Berger, M.: Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure and Applied Mathematics. Academic Press, New York (1977)

    MATH  Google Scholar 

  16. Catto, I., Exner, P., Hainzl, Ch.: Enhanced binding revisited for a spinless particle in nonrelativistic QED. J. Math. Phys. 45(11), 4174–4185 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Catto, I., Hainzl, C.: Self-energy of one electron in non-relativistic QED. J. Funct. Anal. 207(1), 68–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, T.: Infrared renormalization in non-relativistic QED and scaling criticality. J. Funct. Anal. 254(10), 2555–2647 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, T., Fröhlich, J., Pizzo, A.: Infraparticle scattering states in non-relativistic QED, I: the Bloch-Nordsieck paradigm. arXiv:0709.2493

  20. Chen, T., Fröhlich, J., Pizzo, A.: Infraparticle scattering states in non-relativistic QED, II: mass shell properties. arXiv:0709.2812

  21. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms—Introduction to Quantum Electrodynamics. Wiley, New York (1991)

    Google Scholar 

  22. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions—Basic Processes and Applications. Wiley, New York (1992)

    Google Scholar 

  23. Faupin, J.: Resonances of the confined hydrogenoid ion and the Dicke effect in non-relativistic quantum electrodynamics. Ann. H. Poincaré 9(4), 743–773 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Compton scattering. Commun. Math. Phys. 252(1–3), 415–476 (2004)

    Article  MATH  ADS  Google Scholar 

  25. Fröhlich, J., Griesemer, M., Sigal, I.M.: Spectral theory for the standard model of non-relativistic QED. Commun. Math. Phys. 283(3), 613–646 (2008)

    Article  MATH  ADS  Google Scholar 

  26. Fröhlich, J., Griesemer, M., Sigal, I.M.: Spectral renormalization group analysis. e-print, ArXiv (2008)

  27. Fröhlich, J., Griesemer, M., Sigal, I.M.: Spectral renormalization group and limiting absorption principle for the standard model of non-relativistic QED. In preparation

  28. Griesemer, M.: Non-relativistic matter and quantized radiation. e-print, arXiv

  29. Griesemer, M., Hasler, D.: On the smooth Feshbach-Schur map. J. Funct. Anal. 254(9), 2329–2335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Griesemer, M., Hasler, D.: Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation. arXiv:0801.4458

  31. Griesemer, M., Lieb, E.H., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Gustafson, S., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  33. Hainzl, Ch.: One non-relativistic particle coupled to a photon field. Ann. H. Poincaré 4(2), 217–237 (2003)

    MATH  MathSciNet  Google Scholar 

  34. Hainzl, Ch., Seiringer, R.: Mass renormalization and energy level shift in non-relativistic QED. Adv. Theor. Math. Phys. 6(5), 847–871 (2003)

    MathSciNet  Google Scholar 

  35. Hasler, D., Herbst, I.: Absence of ground states for a class of translation invariant models of non-relativistic QED. Commun. Math. Phys. 279(3), 769–787 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Hasler, D., Herbst, I., Huber, M.: On the lifetime of quasi-stationary states in non-relativistic QED. Ann. H. Poincaré 9(5), 1005–1028 (2008). arXiv:0709.3856

    Article  MATH  MathSciNet  Google Scholar 

  37. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. AMS, Reading (1957)

    Google Scholar 

  38. Hirokawa, M.: Recent developments in mathematical methods for models in non-relativistic quantum electrodynamics. In: A Garden of Quanta, pp. 209–242. World Scientific, River Edge (2003)

    Google Scholar 

  39. Hiroshima, F.: Ground states of a model in nonrelativistic quantum electrodynamics, I. J. Math. Phys. 40(12), 6209–6222 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Hiroshima, F.: Ground states of a model in nonrelativistic quantum electrodynamics, II. J. Math. Phys. 41(2), 661–674 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Hiroshima, F.: Ground states and spectrum of quantum electrodynamics of nonrelativistic particles. Trans. Am. Math. Soc. 353(11), 4497–4528 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hiroshima, F.: Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling constants. Ann. H. Poincaré 3(1), 171–201 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hiroshima, F.: Nonrelativistic QED at large momentum of photons. In: A Garden of Quanta, pp. 167–196. World Scientific, River Edge (2003)

    Google Scholar 

  44. Hiroshima, F.: Analysis of ground states of atoms interacting with a quantized radiation field. In: Topics in the Theory of Schrödinger Operators, pp. 145–272. World Scientific, River Edge (2004)

    Google Scholar 

  45. Hiroshima, F., Spohn, H.: Ground state degeneracy of the Pauli-Fierz Hamiltonian with spin. Adv. Theor. Math. Phys. 5(6), 1091–1104 (2001)

    MATH  MathSciNet  Google Scholar 

  46. Hiroshima, F., Spohn, H.: Mass renormalization in nonrelativistic quantum electrodynamics. J. Math. Phys. 46(4) (2005)

  47. Hislop, P., Sigal, I.M.: Introduction to Spectral Theory. Applications to Schrödinger Operators. Applied Mathematical Sciences, vol. 113. Springer, New York (1996)

    Google Scholar 

  48. Hunziker, W.: Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132(1), 177–188 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Hunziker, W., Sigal, I.M.: The quantum N-body problem. J. Math. Phys. 41(6), 3448–3510 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Kato, T.: Perturbation Theory of Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 2 edn. Springer, Berlin (1976)

    Google Scholar 

  51. King, Ch.: Resonant decay of a two state atom interacting with a massless non-relativistic quantized scalar field. Commun. Math. Phys. 165(3), 569–594 (1994)

    Article  MATH  ADS  Google Scholar 

  52. Lieb, E.H., Loss, M.: Existence of atoms and molecules in non-relativistic quantum electrodynamics. Adv. Theor. Math. Phys. 7, 667–710 (2003). arXiv:math-ph/0307046

    MATH  MathSciNet  Google Scholar 

  53. Lieb, E.H., Loss, M.: Self-energy of electrons in non-perturbative QED. In: Conference Mosh Flato 1999, vol. I, Dijon. Math. Phys. Stud., vol. 21, pp. 327–344. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  54. Lieb, E.H., Loss, M.: A bound on binding energies and mass renormalization in models of quantum electrodynamics. J. Stat. Phys. 108 (2002)

  55. Loss, M., Miyao, T., Spohn, H.: Lowest energy states in nonrelativistic QED: Atoms and ions in motion J. Funct. Anal. 243(2), 353–393 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mück, M.: Construction of metastable states in quantum electrodynamics. Rev. Math. Phys. 16(1), 1–28 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Pizzo, A.: Scattering of an infraparticle: the one particle sector in Nelson’s massless model. Ann. H. Poincaré 6(3), 553–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  58. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV, Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  59. Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Michael Sigal.

Additional information

To Jürg and Tom, with admiration.

Supported by NSERC Grant No. NA7901.

Visiting IAS, Princeton, NJ, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigal, I.M. Ground State and Resonances in the Standard Model of the Non-Relativistic QED. J Stat Phys 134, 899–939 (2009). https://doi.org/10.1007/s10955-009-9721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9721-5

Keywords

Navigation