Skip to main content
Log in

A Resonance Theory for Open Quantum Systems with Time-Dependent Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a resonance theory to describe the evolution of open systems with time-dependent dynamics. Our approach is based on piecewise constant Hamiltonians: we represent the evolution on each constant bit using a recently developed dynamical resonance theory, and we piece them together to obtain the total evolution. The initial state corresponding to one time-interval with constant Hamiltonian is the final state of the system corresponding to the interval before. This results in a non-Markovian dynamics. We find a representation of the dynamics in terms of resonance energies and resonance states associated to the Hamiltonians, valid for all times t≥0 and for small (but fixed) interaction strengths. The representation has the form of a path integral over resonances. We present applications to a spin-fermion system, where the energy levels of the spin may undergo rather arbitrary crossings in the course of time. In particular, we find the probability for transition between ground- and excited state at all times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou Salem, W.K.: On the quasi-static evolution of nonequilibrium steady states. Ann. H. Poincaré 8(3), 569–596 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abou Salem, W.K., Fröhlich, J.: Cyclic thermodynamic processes and entropy production. J. Stat. Phys. 126(3), 431–466 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Abou Salem, W.K., Fröhlich, J.: Adiabtic theorems for quantum resonances. Commun. Math. Phys. 273(3), 651–675 (2007)

    Article  MATH  ADS  Google Scholar 

  4. Ao, P., Rammer, J.: Influence of dissipation on the Landau-Zener transition. Phys. Rev. Lett. 62(25), 3004–3007 (1989)

    Article  ADS  Google Scholar 

  5. Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136–159 (1964)

    MATH  MathSciNet  Google Scholar 

  6. Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137(2), 205–298 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I, II. Texts and Monographs in Physics. Springer, Berlin (1987)

    Google Scholar 

  9. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Funct. Anal. 239(1), 310–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruneau, L., Joye, A., Merkli, M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284(2), 553–581 (2008). doi:10.1007/s00220-008-0580-8

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Fröhlich, J., Merkli, M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251(2), 235–262 (2004)

    Article  MATH  ADS  Google Scholar 

  12. Fröhlich, J., Merkli, M., Schwarz, S., Ueltschi, D.: Statistical mechanics of thermodynamic processes. In: A Garden of Quanta, pp. 345–363. World Sci., River Edge (2003)

    Google Scholar 

  13. Hagedorn, G.A., Joye, A.: Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Ann. Inst. H. Poincaré Phys. Théor. 68(1), 85–134 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Jaks̆ić, V., Pillet, C.-A.: On a model for quantum friction. II. Fermi’s golden rule and dynamics at positive temperature. Commun. Math. Phys. 176(3), 619–644 (1996)

    Article  ADS  Google Scholar 

  15. Jaks̆ić, V., Pillet, C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226(1), 131–162 (2002)

    Article  ADS  Google Scholar 

  16. Merkli, M.: Level shift operators for open quantum systems. J. Math. Anal. Appl. 327(1), 376–399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Merkli, M., Mück, M., Sigal, I.M.: Instability of equilibrium states for coupled heat reservoirs at different temperatures. J. Funct. Anal. 243(1), 87–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merkli, M., Mück, M., Sigal, I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. H. Poincaré 8(8), 1539–1593 (2007)

    Article  MATH  Google Scholar 

  19. Merkli, M., Sigal, I.M., Berman, G.P.: Decoherence and thermalization. Phys. Rev. Lett. 98(13), 130401 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Merkli, M., Berman, G.P., Sigal, I.M.: Dynamics of collective decoherence and thermalization. Ann. Phys. 323, 3091–3112 (2008). doi:10.1016/j.aop.2008.07.004

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Merkli, M., Sigal, I.M., Berman, G.P.: Resonance theory of decoherence and thermalization. Ann. Phys. 323(2), 373–412 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Suzuki, S., Okada, M.: Simulated quantum annealing by the real-time evolution. Lect. Notes Phys. 679, 207–238 (2005)

    Article  ADS  Google Scholar 

  23. Widder, D.V.: The Laplace Transform. Princeton Mathematical Series. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  24. Wubs, M., Saito, K., Kohler, S., Hänggi, P., Kayanuma, Y.: Gauging a quantum heat bath with dissipative Landau-Zener transitions. Phys. Rev. Lett. 97, 200404 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Merkli.

Additional information

Dedicated to Jürg Fröhlich and Tom Spencer with our respect and affection.

M. Merkli supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant 205247. S. Starr supported in part by a US National Science Foundation grant, DMS-0706927.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkli, M., Starr, S. A Resonance Theory for Open Quantum Systems with Time-Dependent Dynamics. J Stat Phys 134, 871–898 (2009). https://doi.org/10.1007/s10955-008-9645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9645-5

Keywords

Navigation