Skip to main content
Log in

Information and Entropy in Quantum Brownian Motion

Thermodynamic Entropy versus von Neumann Entropy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, G.S.: Entropy, the Wigner distribution function, and the approach to equilibrium of a system of coupled harmonic oscillators. Phys. Rev. A 3, 828 (1971)

    Article  ADS  Google Scholar 

  2. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in quantum regime. Phys. Rev. Lett. 85, 1799 (2000)

    Article  ADS  Google Scholar 

  3. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Breakdown of the Landauer bound for information erasure in the quantum regime. Phys. Rev. E 64, 056117 (2001)

    Article  ADS  Google Scholar 

  4. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Statistical thermodynamics of quantum Brownian motion: birth of perpetuum mobile of the second kind. Phys. Rev. E 66, 036102 (2002)

    Article  ADS  Google Scholar 

  5. Bennett, C.H.: Thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905 (1982)

    Article  Google Scholar 

  6. Braunstein, S., van Look, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  7. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2003)

    Google Scholar 

  8. Büttiker, M., Jordan, A.N.: Ground state entanglement energetics. Physica E 29, 272 (2005)

    Article  ADS  Google Scholar 

  9. Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211 (1981)

    Article  ADS  Google Scholar 

  10. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Caldeira, A.O., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  ADS  Google Scholar 

  12. Cerf, N.J., Leuchs, G., Polzik, E.S.: Quantum Information with Continuous Variables of Atoms and Light. Imperial College Press, London (2007)

    MATH  Google Scholar 

  13. Dittrich, T., Hänggi, P., Ingold, G.L., Kramer, B., Schön, G., Zwerger, W.: Quantum Transport and Dissipation. Wiley-VCH, Weinheim (1998)

    MATH  Google Scholar 

  14. Ford, G.W., Kac, M.: On the Quantum Langevin equation. J. Stat. Phys. 46, 803 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504 (1965)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian. J. Stat. Phys. 53, 439 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Quantum Langevin equation. Phys. Rev. A 37, 4419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ford, G.W., O’Connell, R.F.: Entropy of a quantum oscillator coupled to a heat bath and implications for quantum thermodynamics. Physica E 29, 82 (2005)

    Article  ADS  Google Scholar 

  19. Ford, G.W., O’Connell, R.F.: A quantum violation of the second law? Phys. Rev. Lett. 96, 020402 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    MATH  Google Scholar 

  21. Grabert, H., Schramm, P., Ingold, G.L.: Quantum Brownian motion: the functional integral approach. Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hänggi, P., Ingold, G.L.: Fundamental aspects of quantum Brownian motion. Chaos 15, 026105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hänggi, P., Ingold, G.L.: Quantum Brownian motion and the third law of thermodynamics. Acta Phys. Pol. B 37, 1537 (2006)

    ADS  Google Scholar 

  24. Hörhammer, C., Büttner, H.: Thermodynamics of quantum Brownian motion: the role of entanglement in the strong coupling quantum regime. J. Phys. A: Math. Gen. 38, 7325 (2005)

    Article  ADS  Google Scholar 

  25. Jordan, A.N., Büttiker, M.: Entanglement energetics at zero temperature. Phys. Rev. Lett. 92, 247901 (2004)

    Article  ADS  Google Scholar 

  26. Kim, I., Mahler, G.: Quantum Brownian motion and the second law of thermodynamics. Eur. Phys. J. B 54, 405 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Landau, D.P., Lifshitz, E.M.: Statistical Physics, Part 1. Pergamon, London (1980)

    Google Scholar 

  28. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenard, A.: Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Nieuwenhuizen, T.M., Spicka, V., Keefe, P.D.: Frontiers of Quantum and Mesocopic Thermodynamics. Elsevier, Amsterdam (2004)

    Google Scholar 

  32. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (2004)

    Google Scholar 

  33. Pusz, W., Woronowicz, L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  34. Serafini, A., Paris, M.G.A., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Opt. B Quantum Semiclass. Opt. 7, R19 (2005)

    Article  ADS  Google Scholar 

  35. Sheehan, D.P.: Quantum Limits to the Second Law. American Inst. of Physics, Melville (2002)

    MATH  Google Scholar 

  36. Weimer, H., Henrich, M.J., Rempp, F., Schröder, H., Mahler, G.: Local effective dynamics of quantum systems: A generalized approach to work and heat. Europhys. Lett. 83, 30008 (2008)

    Article  ADS  Google Scholar 

  37. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hörhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörhammer, C., Büttner, H. Information and Entropy in Quantum Brownian Motion. J Stat Phys 133, 1161–1174 (2008). https://doi.org/10.1007/s10955-008-9640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9640-x

Keywords

Navigation