Skip to main content
Log in

Equilibrium Solution to the Inelastic Boltzmann Equation Driven by a Particle Bath

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show the existence of smooth stationary solutions for the inelastic Boltzmann equation under the thermalization induced by a host medium with a fixed distribution. This is achieved by controlling the L p-norms, the moments and the regularity of the solutions to the Cauchy problem together with arguments related to a dynamical proof for the existence of stationary states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd, L.: On the Boltzmann equation. Arch. Ration. Mech. Anal. 34, 1–34 (1972)

    MathSciNet  Google Scholar 

  2. Arkeryd, L.: L -estimates for the spatially homogeneous Boltzmann equation. J. Stat. Phys. 31, 347–361 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Arlotti, L., Lods, B.: Integral representation of the linear Boltzmann operator for granular gas dynamics with applications. J. Stat. Phys. 129, 517–536 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bagland, V., Laurençot, P.: Self-similar solutions to the Oort-Hulst-Safronov coagulation equation. SIAM J. Math. Anal. 39, 345–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Naim, E., Krapivski, P.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)

    Article  ADS  Google Scholar 

  6. Ben-Naim, E., Krapivski, P.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147–L152 (2002)

    Article  MATH  Google Scholar 

  7. Biben, Th., Martin, Ph.A., Piasecki, J.: Stationary state of thermostated inelastic hard spheres. Physica A 310, 309–324 (2002)

    Article  ADS  Google Scholar 

  8. Bisi, M., Spiga, G.: Fluid-dynamic equations for granular particles in a host-medium. J. Math. Phys. 46, 113301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bisi, M., Spiga, G.: Dilute granular flows in a medium. Transp. Theory Stat. Phys. 36, 79–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bisi, M., Carrillo, J.A., Toscani, G.: Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria. J. Stat. Phys. 118, 301–331 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124, 625–653 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Bizon, C., Shattuck, M.D., Swift, J.B., Swinney, H.L.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340–4351 (1999)

    Article  ADS  Google Scholar 

  13. Bobylev, A.V.: Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules. Dokl. Akad. Nauk USSR 225, 1041–1044 (1975)

    ADS  MathSciNet  Google Scholar 

  14. Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Stat. Phys. 106, 547–567 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bobylev, A.V., Gamba, I.: Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails. J. Stat. Phys. 124, 497–516 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Bobylev, A.V., Carrillo, J.A., Gamba, I.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000); Erratum on: J. Stat. Phys. 103, 1137–1138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bobylev, A.V., Gamba, I., Panferov, V.: Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Bobylev, A.V., Cercignani, C., Gamba, I.: On the self-similar asymptotics for generalized non-linear kinetic Maxwell models. Commun. Math. Phys. (2008, to appear)

  20. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14, 47–61 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, London (2004)

    MATH  Google Scholar 

  22. Carlen, E.A., Carrillo, J.A., Carvalho, M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. Inst. Henri Poincaré Anal. Non Linéaire (2008, to appear)

  23. Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma (7) 6, 75–198 (2007)

    MathSciNet  Google Scholar 

  24. Carrillo, J.A., Cercignani, C., Gamba, I.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E 62, 7700–7707 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Carrillo, J.A., Di Francesco, M., Toscani, G.: Intermediate asymptotics beyond homogeneity and self-similarity: long time behavior for u t φ(u). Arch. Ration. Mech. Anal. 180, 127–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Desvillettes, L.: About the use of the Fourier transform for the Boltzmann equation. Riv. Mat. Univ. Parma (7) 2, 1–99 (2003)

    MathSciNet  Google Scholar 

  27. Duduchava, R., Kirsch, R., Rjasanow, S.: On estimates of the Boltzmann collision operator with cut-off. J. Math. Fluid Mech. 8, 242–266 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Escobedo, M., Mischler, S., Rodriguez Ricard, M.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22, 99–125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fournier, N., Mischler, S.: A spatially homogeneous Boltzmann equation for elastic, inelastic, and coalescing collisions. J. Math. Pures Appl. 84, 1173–1234 (2005)

    MATH  MathSciNet  Google Scholar 

  30. Gamba, I., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications I. J. Math. Kyoto Univ. 34, 391–427 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications II. J. Math. Kyoto Univ. 34, 429–461 (1994)

    Google Scholar 

  33. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications III. J. Math. Kyoto Univ. 34, 539–584 (1994)

    MATH  MathSciNet  Google Scholar 

  34. Lods, B., Toscani, G.: The dissipative linear Boltzmann equation for hard spheres. J. Stat. Phys. 117, 635–664 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Lu, X.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228, 409–435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Martin, P.A., Piaceski, J.: Thermalization of a particle by dissipative collisions. Europhys. Lett. 46, 613–616 (1999)

    Article  ADS  Google Scholar 

  37. Mischler, S., Mouhot, C.: Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solution and tail behavior. J. Stat. Phys. 124, 703–746 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Mischler, S., Mouhot, C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. (2007, to appear)

  39. Mischler, S., Mouhot, C.: Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited inelastic hard spheres. Discrete Continuous Dyn. Syst. Ser. A (2007, to appear)

  40. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 16, 467–501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mischler, S., Mouhot, C., Rodriguez, R.M.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem. J. Stat. Phys. 124, 655–702 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Mouhot, C.: Etude mathématiques de quelques équations cinétiques collisionnelles. Ph.D. thesis, Ecole Normale Supérieure Lyon, France (2004)

  43. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173, 169–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Spiga, G., Toscani, G.: The dissipative linear Boltzmann equation. Appl. Math. Lett. 17, 295–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124, 781–822 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Bisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisi, M., Carrillo, J.A. & Lods, B. Equilibrium Solution to the Inelastic Boltzmann Equation Driven by a Particle Bath. J Stat Phys 133, 841–870 (2008). https://doi.org/10.1007/s10955-008-9636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9636-6

Keywords

Navigation