Skip to main content
Log in

Quantum Dynamics with Mean Field Interactions: a New Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new approach for the study of the time evolution of a factorized N-particle bosonic wave function with respect to a mean-field dynamics with a bounded interaction potential. The new technique, which is based on the control of the growth of the correlations among the particles, leads to quantitative bounds on the difference between the many-particle Schrödinger dynamics and the one-particle nonlinear Hartree dynamics. In particular the one-particle density matrix associated with the solution to the N-particle Schrödinger equation is shown to converge to the projection onto the one-dimensional subspace spanned by the solution to the Hartree equation with a speed of convergence of order 1/N for all fixed times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one. Asymptot. Anal. 40(2), 93–108 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross–Pitaevskii equation as the mean filed limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179(2), 265–283 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  Google Scholar 

  7. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. (to appear). Preprint arXiv:math-ph/0606017

  9. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev Lett. 98(4), 040404 (2007)

    Article  ADS  Google Scholar 

  10. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation: the case of a strong potential. Preprint arXiv:0802.3877

  11. Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MathSciNet  Google Scholar 

  12. Fröhlich, J., Graffi, S., Schwarz, S.: Mean-field- and classical limit of many body Schrödinger dynamics for bosons. Commun. Math. Phys. 271(3), 681–697 (2007)

    Article  MATH  ADS  Google Scholar 

  13. Fröhlich, J., Knowles, A., Pizzo, A.: Atomism and quantization. J. Phys. A 40(12), 3033–3045 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems, I. Commun. Math. Phys. 66, 37–76 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems, II. Commun. Math. Phys. 68, 45–68 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nachtergaele, B., Sims, R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Nachtergaele, B., Raz, H., Schlein, B., Sims, R.: Lieb-Robinson bounds for harmonic and anharmonic lattice systems. Preprint arXiv:0712.3820

  21. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Preprint arXiv:0711.3087

  22. Spohn, H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schlein.

Additional information

Dedicated to Jürg Fröhlich on the occasion of his 60th birthday, with admiration and gratitude.

L. Erdős is partially supported by SFB/TR12 Project from DFG.

B. Schlein is is on leave from Cambridge University; his research is supported by a Kovalevskaja Award from Me Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, L., Schlein, B. Quantum Dynamics with Mean Field Interactions: a New Approach. J Stat Phys 134, 859–870 (2009). https://doi.org/10.1007/s10955-008-9570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9570-7

Keywords

Navigation