Skip to main content
Log in

Boltzmann Limit and Quasifreeness for a Homogenous Fermi Gas in a Weakly Disordered Random Medium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss some basic aspects of the dynamics of a homogenous Fermi gas in a weak random potential, under negligence of the particle pair interactions. We derive the kinetic scaling limit for the momentum distribution function with a translation invariant initial state and prove that it is determined by a linear Boltzmann equation. Moreover, we prove that if the initial state is quasifree, then the time evolved state, averaged over the randomness, has a quasifree kinetic limit. We show that the momentum distributions determined by the Gibbs states of a free fermion field are stationary solutions of the linear Boltzmann equation; this includes the limit of zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Sims, R., Warzel, S.: Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun. Math. Phys. 264(2), 371–389 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aschbacher, W., Jaksic, V., Pautrat, Y., Pillet, C.-A.: Transport properties of quasi-free fermions J. Math. Phys. 48(3) (2007)

  3. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76(1–2), 3–89 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: Some considerations on the derivation of the nonlinear quantum Boltzmann equation. J. Stat. Phys. 116(1–4), 381–410 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: On random Schrödinger operators on ℤ2. Discrete Contin. Dyn. Syst. 8(1), 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Random lattice Schrödinger operators with decaying potential: Some higher dimensional phenomena. In: LNM, vol. 1807, pp. 70–98. Springer, Berlin (2003)

    Google Scholar 

  7. Chen, T.: Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3. J. Stat. Phys. 120(1–2), 279–337 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, T.: Convergence in higher mean of a random Schrödinger to a linear Boltzmann evolution. Commun. Math. Phys. 267, 355–392 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Erdös, L.: Linear Boltzmann equation as the scaling limit of the Schrödinger evolution coupled to a phonon bath. J. Stat. Phys. 107(5), 1043–1127 (2002)

    Article  MATH  Google Scholar 

  10. Erdös, L., Salmhofer, M.: Decay of the Fourier transform of surfaces with vanishing curvature. Math. Z. 257(2), 261–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdös, L., Yau, H.-T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53(6), 667–735 (2000)

    Article  MATH  Google Scholar 

  12. Erdös, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116(114), 367–380 (2004)

    Article  ADS  MATH  Google Scholar 

  13. Erdös, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion for the Anderson model in the scaling limit. Ann. H. Poincaré 8(4), 621–685 (2007)

    Article  MATH  Google Scholar 

  14. Erdös, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams. Commun. Math. Phys. 271(1), 1–53 (2007)

    Article  ADS  MATH  Google Scholar 

  15. Feldman, J., Knörrer, H., Trubowitz, E.: A two dimensional Fermi liquid. Part 1: Overview. Commun. Math. Phys 247, 1–47 (2004)

    Article  ADS  MATH  Google Scholar 

  16. Ho, T.G., Landau, L.J.: Fermi gas on a lattice in the van Hove limit. J. Stat. Phys. 87, 821–845 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hugenholtz, N.M.: Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32, 231–254 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Klein, A.: Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett. 1, 399–407 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Lukkarinen, J., Spohn, H.: Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal. 183, 93–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rodnianski, I., Schlag, W.: Classical and quantum scattering for a class of long range random potentials. Int. Math. Res. Not. 2003(5), 243–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spohn, H.: Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17(6), 385–412 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124(2–4), 1041–1104 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Sasaki, I. Boltzmann Limit and Quasifreeness for a Homogenous Fermi Gas in a Weakly Disordered Random Medium. J Stat Phys 132, 329–353 (2008). https://doi.org/10.1007/s10955-008-9560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9560-9

Keywords

Navigation