Skip to main content
Log in

Kinetics of Polydomain Ordering at Second-Order Phase Transitions (by the Example of the AuCu3 Alloy)

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We introduce four non-conserved long-range order parameters whose sum, however, is conserved and, using the statistical approach, follow the temporal evolution of their random spatial distribution after a rapid temperature quench. A system of nonlinear differential equations for correlators of second and third order is derived. Asymptotical analysis of this system allows to investigate the scaling regime, which develops on the late stages of evolution and to extract additional information concerning the rate of decrease of the specific volume of disordered regions and the rate of decrease of the average thickness of antiphase boundaries. Comparison of these results to experimental data is given. The quench below the spinodal and the onset of long-range order may be separated by the incubation time, whose origin is different from that in first-order phase transitions. Numerical integration of equations for correlators shows also, that it is possible to prepare a sample in such a way that its further evolution will go with formation of transient kinetically slowed polydomain structures different from the final L12 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oguma, R., Eguchi, T., Matsumura, S., et al.: Acta Mater. 54, 1533 (2006)

    Article  Google Scholar 

  2. Kessler, M., Dieterich, W., Majhofer, A.: Phys. Rev. B 67, 134201 (2003)

    Article  ADS  Google Scholar 

  3. Shannon, R.F., Jr., Nagler, S.E., Harkless, C.R.: Phys. Rev. B 46, 40 (1992)

    Article  ADS  Google Scholar 

  4. Braun, R.J., Cahn, J.W., McFadden, G.B., et al.: Acta Mater. 46, 1 (1998)

    Article  Google Scholar 

  5. Wang, Y., Banerjee, D., Su, C.C., Khachaturyan, A.G.: Acta Mater. 46, 2983 (1998)

    Article  Google Scholar 

  6. Stefanovich, L.I., Feldman, E.P.: Sov. Phys. JETP 86, 128 (1998)

    Article  ADS  Google Scholar 

  7. Feldman, E.P., Stefanovich, L.I., Gumennik, K.V.: Bull. Russ. Acad. Sci. Phys. 70, 1056 (2006). (In Russian)

    Google Scholar 

  8. Vaks, V.G.: Pisma Z. Eksp. Teor. Fiz. 78, 201 (2003)

    Google Scholar 

  9. Pankratov, I.R., Vaks, V.G.: Phys. Rev. B 68, 134208 (2003)

    Article  ADS  Google Scholar 

  10. Binder, K.: In: Gonis, A., Turchi, P.E.A. (eds.) Statics and Dynamics of Alloy Phase Transformations. NATO Advanced Study Institute, Series B: Physics, vol. 319, pp. 467–493. Plenum, New York (1994)

    Google Scholar 

  11. Lifshits, I.M.: Sov. Phys. JETP 15, 939 (1962)

    Google Scholar 

  12. Feldman, E.P., Stefanovich, L.I.: Sov. Phys. JETP Lett. 63, 983 (1996)

    Article  ADS  Google Scholar 

  13. Shockley, W.: J. Chem. Phys. 6, 130 (1938)

    Article  ADS  Google Scholar 

  14. Smirnov, A.A.: Generalized Theory of Ordered Alloys, p. 76. Naukova Dumka, Kiev (1989). (In Russian)

    Google Scholar 

  15. Martin, G.: Phys. Rev. B 50, 12362 (1994)

    Article  ADS  Google Scholar 

  16. Cahn, J.W., Novick-Cohen, A.: J. Stat. Phys. 76, 877 (1994)

    Article  MATH  ADS  Google Scholar 

  17. Stefanovich, L.I., Feldman, E.P., Subbotin, A.A., Gumennik, K.V.: Metallofiz. Novejs. Tehnol. 27, 427 (2004). (in Russian)

    Google Scholar 

  18. Krivoglaz, M.A., Smirnov, A.A.: The Theory of Order-Disorder Alloys. Macdonald, London (1965)

    Google Scholar 

  19. Allen, S.M., Cahn, J.W.: Acta Metall. 27, 1085 (1979)

    Article  Google Scholar 

  20. Tompkins, C.B.: In: Beckenbach, E.F. (ed.) Modern Mathematics for the Engineer. McGraw-Hill, New York (1956)

    Google Scholar 

  21. Vaks, V.G.: Phys. Rep. 391, 157 (2004)

    Article  ADS  Google Scholar 

  22. Bray, A.J.: Adv. Phys. 43, 357 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Frontera, C., Vives, E., Castan, T., et al.: Phys. Rev. B 55, 212 (1997)

    Article  ADS  Google Scholar 

  24. Phani, M.K., Lebowitz, J.L., Calos, M.H., et al.: Phys. Rev. Lett. 45, 366 (1980)

    Article  ADS  Google Scholar 

  25. Fluerasu, A., Sutton, M., Dufresne, E.: Phys. Rev. Lett. 94, 055501 (2005)

    Article  ADS  Google Scholar 

  26. Wang, X., Mainville, J., Ludwig, K., et al.: Phys. Rev. B 72, 024215 (2005)

    Article  ADS  Google Scholar 

  27. Lang, H., Uzawa, H., Mohri, T., et al.: Intermetallics 9, 9 (2001)

    Article  Google Scholar 

  28. Takahashi, Y.K., Koyama, T., Ohnuma, M., et al.: J. Appl. Phys. 95, 2690 (2004)

    Article  ADS  Google Scholar 

  29. Miyazaki, T., Kitakami, O., Okamoto, S., et al.: Phys. Rev. B 72, 144419 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, E.P., Stefanovich, L.I. & Gumennyk, K.V. Kinetics of Polydomain Ordering at Second-Order Phase Transitions (by the Example of the AuCu3 Alloy). J Stat Phys 132, 501–517 (2008). https://doi.org/10.1007/s10955-008-9559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9559-2

Keywords

Navigation