Skip to main content
Log in

Discontinuous Condensation Transition and Nonequivalence of Ensembles in a Zero-Range Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 04 October 2008

Abstract

We study a zero-range process where the jump rates do not only depend on the local particle configuration, but also on the size of the system. Rigorous results on the equivalence of ensembles are presented, characterizing the occurrence of a condensation transition. In contrast to previous results, the phase transition is discontinuous and the system exhibits ergodicity breaking and metastable phases. This leads to a richer phase diagram, including nonequivalence of ensembles in certain phase regions. The paper is motivated by results from granular clustering, where these features have been observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andjel, E.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angel, A.G., Evans, M.R., Levine, E., Mukamel, D.: Criticality and condensation in a non-conserving zero range process. J. Stat. Mech. P08017 (2007)

  3. Bovier, A.: Metastability: A potential theoretic approach. In: Proceedings of the ICM 2006, Madrid, pp. 499–518. European Mathematical Society (2006)

  4. Coppex, F., Droz, M., Lipowski, A.: Dynamics of the breakdown of granular clusters. Phys. Rev. E 66, 011305 (2002)

    Article  ADS  Google Scholar 

  5. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975)

    Article  MATH  Google Scholar 

  6. Csiszár, I.: Sanov property, generalized i-projection and a conditional limit theorem. Ann. Probab. 12, 768–793 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eggers, J.: Sand as Maxwell’s Demon. Phys. Rev. Lett. 83(25), 5322–5325 (1999)

    Article  ADS  Google Scholar 

  8. Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999–1064 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–57 (2000)

    Article  Google Scholar 

  10. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38, R195–R239 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Evans, M.R., Hanney, T., Majumdar, S.N.: Interaction driven real-space condensation. Phys. Rev. Lett. 97, 010602 (2006)

    Article  ADS  Google Scholar 

  12. Ferrari, P.A., Landim, C., Sisko, V.V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128, 1153–1158 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Godrèche, C.: Dynamics of condensation in zero-range processes. J. Phys. A: Math. Gen. 36, 6313–6328 (2003)

    Article  MATH  Google Scholar 

  14. Godrèche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A: Math. Gen. 38, 7215–7237 (2005)

    Article  ADS  Google Scholar 

  15. Godrèche, C.: Nonequilibrium phase transition in a non integrable zero-range process. J. Phys. A: Math. Gen. 39, 9055–9069 (2006)

    Article  MATH  ADS  Google Scholar 

  16. Grosskinsky, S.: Equivalence of ensembles for two-component zero-range invariant measures. Accepted in Stoch. Proc. Appl. doi:10.1016/j.spa.2007.09.006

  17. Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113(3/4), 389–410 (2003)

    Article  MATH  Google Scholar 

  18. Grosskinsky, S., Schütz, G.M.: in preparation

  19. Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Török, J.: Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89(3), 035702 (2002)

    Article  ADS  Google Scholar 

  20. Kaupuzs, J., Mahnke, R., Harris, R.J.: Zero-range model of traffic flow. Phys. Rev. E 72(5), 056125 (2005)

    Article  ADS  Google Scholar 

  21. Levine, E., Mukamel, D., Schütz, G.M.: Zero range process with open boudaries. J. Stat. Phys. 120(5/6), 759–778 (2002)

    ADS  Google Scholar 

  22. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (2004)

    Google Scholar 

  23. Lipowski, A., Droz, M.: Urn model of separation of sand. Phys. Rev. E 65, 031307 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Loulakis, M., Armendáriz, I.: Thermodynamic limit for the invariant measures in supercritical zero range processes (2008). arXiv:0801.2511

  25. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969)

    MATH  Google Scholar 

  26. Schlichting, H.J., Nordmeier, V.: Strukturen im Sand. Kollektives Verhalten und Selbstorganisation bei Granulaten. Math. Naturw. Unterricht 49(6), 323–332 (1996) (in German)

    Google Scholar 

  27. Schütz, G.M., Harris, R.J.: Hydrodynamics of the zero-range process in the condensation regime. J. Stat. Phys. 127(2), 419–430 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Schwarzkopf, Y., Evans, M.R., Mukamel, D.: Zero-range processes with multiple condensates: Statics and dynamics (2008). arXiv:0801.4501

  29. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  30. Török, J.: Analytic study of clustering in shaken granular material using zero-range processes. Physica A 355, 374–382 (2005)

    Article  ADS  Google Scholar 

  31. Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A 340, 138–146 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. van der Meer, D., van der Weele, J.P., Lohse, D.: Sudden collapse of a granular cluster. Phys. Rev. Lett. 88, 174302 (2002)

    Article  ADS  Google Scholar 

  33. van der Meer, D., van der Weele, K., Reimann, P., Lohse, D.: J. Stat. Mech.: Theor. Exp. P07021 (2007)

  34. van der Weele, J.P., van der Meer, D., Versluis, M., Lohse, D.: Hysteretic clustering in granular gas. Eur. Lett. 53(3), 328–334 (2001)

    Article  ADS  Google Scholar 

  35. Varadhan, S.R.S.: Large deviations and applications. Ecole d’Eté de Probabilités de Saint-Flour XV–XVII. Lecture Notes in Math. Springer, Berlin (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Grosskinsky.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10955-008-9628-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosskinsky, S., Schütz, G.M. Discontinuous Condensation Transition and Nonequivalence of Ensembles in a Zero-Range Process. J Stat Phys 132, 77–108 (2008). https://doi.org/10.1007/s10955-008-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9541-z

Keywords

Navigation