Skip to main content
Log in

Analytical Approach to the One-Dimensional Disordered Exclusion Process with Open Boundaries and Random Sequential Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A one-dimensional disordered particle hopping rate asymmetric exclusion process (ASEP) with open boundaries and a random sequential dynamics is studied analytically. Combining the exact results of the steady states in the pure case with a perturbative mean field-like approach the broken particle-hole symmetry is highlighted and the phase diagram is studied in the parameter space (α,β), where α and β represent respectively the injection rate and the extraction rate of particles. The model displays, as in the pure case, high-density, low-density and maximum-current phases. All critical lines are determined analytically showing that the high-density low-density first order phase transition occurs at αβ. We show that the maximum-current phase extends its stability region as the disorder is increased and the usual \(1/\sqrt{\ell}\) -decay of the density profile in this phase is universal. Assuming that some exact results for the disordered model on a ring hold for a system with open boundaries, we derive some analytical results for platoon phase transition within the low-density phase and we give an analytical expression of its corresponding critical injection rate α *. As it was observed numerically (Bengrine et al. J. Phys. A: Math. Gen. 32:2527, [1999]), we show that the quenched disorder induces a cusp in the current-density relation at maximum flow in a certain region of parameter space and determine the analytical expression of its slope. The results of numerical simulations we develop agree with the analytical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 45, 2026 (1985)

    Article  Google Scholar 

  2. Schmittman, B., Zia, R.K.P.: Statistical Mechanics of Driven Diffusive Systems. Domb and Lebowitz, Ser. 17. Academic, London (1995)

    Google Scholar 

  3. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)

    MATH  Google Scholar 

  4. Burgers, J.M.: The Non Linear Diffusion Equation. Riedel, Boston (1974)

    Google Scholar 

  5. Meakin, P., Ramanlal, P., Sander, L., Ball, R.C.: Ballistic deposition on surfaces. Phys. Rev. A 34, 5091 (1986)

    Article  ADS  Google Scholar 

  6. Kardar, M., Zhang, Y.-C.: Scaling directed polymers in random media. Phys. Rev. Lett. 58, 2087 (1987)

    Article  ADS  Google Scholar 

  7. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1991)

    Google Scholar 

  8. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  MATH  Google Scholar 

  9. Wolf, D.E., Tang, H.L.: Inhomogeneous growth process. Phys. Rev. Lett. 65, 1591 (1990)

    Article  ADS  Google Scholar 

  10. Kandel, D., Mukamel, D.: Defects, interface profile and phase transitions in growth models. Europhys. Lett. 65, 325 (1992)

    Article  ADS  Google Scholar 

  11. Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67, 1889 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Physique 12, 2221 (1992)

    Article  ADS  Google Scholar 

  13. Schreckenberg, M., Schadschneider, A., Nagel, K., Ito, N.: Discrete stochastic models for traffic flow. Phys. Rev. E 51, 2939 (1995)

    Article  ADS  Google Scholar 

  14. Nagatani, T.: Bunching of cars in asymmetric exclusion models for free way traffic. Phys. Rev. E 51, 922 (1995)

    Article  ADS  Google Scholar 

  15. Nagatani, T.: Self-organized criticality in 1D traffic flow model with parallel and ordered sequential dynamics. J. Phys. A: Math. Gen. 28, L119 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Migowsky, S., Wanschura, T., Rujan, P.: Competition and cooperation on a toy autobahn model. Z. Phys. B 95, 407 (1994)

    Article  ADS  Google Scholar 

  17. Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69, 667 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schütz, G., Domany, E.: Phase transitions in an exactly solvable one-dimensional exclusion process. J. Stat. Phys. 72, 277 (1993)

    Article  ADS  MATH  Google Scholar 

  19. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of 1d asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26, 1493 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. Gen. 31, 6911 (1998)

    Article  ADS  MATH  Google Scholar 

  21. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: comparison of update procedures. J. Stat. Phys. 92, 151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tilstra, L.G., Ernst, M.H.: Synchronous asymmetric exclusion process. J. Phys. A: Math. Gen. 31, 5033 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Barma, M.: Driven diffusive systems with disorder. Physica A 372, 22 (2006)

    Article  ADS  Google Scholar 

  24. Tripathy, G., Barma, M.: Driven lattice gases with quenched disorder: exact results and different macroscopic regimes. Phys. Rev. E 58, 1911 (1998)

    ADS  Google Scholar 

  25. Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A: Math. Gen. 29, L465 (1996)

    Article  ADS  Google Scholar 

  26. Evans, M.R.: Bose-Einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett. 36, 13 (1996)

    Article  ADS  Google Scholar 

  27. Evans, M.R.: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics. J. Phys. A: Math. Gen. 30, 5669 (1997)

    Article  ADS  MATH  Google Scholar 

  28. Bengrine, M., Benyoussef, A., Ez-Zahraouy, H., Krug, J., Loulidi, M., Mhirech, F.: A simulation study of an asymmetric exclusion model with open boundaries and random rates. J. Phys. A: Math. Gen. 32, 2527 (1999)

    Article  ADS  Google Scholar 

  29. Hager, J.S., Krug, J., Popkov, V., Schütz, G.M.: Minimal current phase and universal boundary layers in driven diffusive systems. Phys. Rev. E 63, 056110 (2001)

    ADS  Google Scholar 

  30. Krug, J.: In: Riste, T., Sherrington, D. (eds.) Spontaneous Formation of Space-time Structures and Criticality, p. 37. Kluwer, Dordrecht (1991)

    Google Scholar 

  31. Tilstra, L.G., Ernst, M.H.: Synchronous asymmetric exclusion processes. J. Phys. A: Math. Gen. 31, 5033 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Loulidi.

Additional information

Regular associate of ICTP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loulidi, M. Analytical Approach to the One-Dimensional Disordered Exclusion Process with Open Boundaries and Random Sequential Dynamics. J Stat Phys 132, 109–127 (2008). https://doi.org/10.1007/s10955-008-9538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9538-7

Keywords

Navigation