Skip to main content

Advertisement

Log in

On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Three classes of time-domain non-relativistic anisotropic dielectric constitutive equations of increasing generality are discussed. In each class dissipativity is ensured by the choice of a class of convolution kernels in the D-to-E constitutive equation expressing the electric field E in terms of the electric displacement field D. Defining properties of the inverse (E-to-D) kernels and their Fourier-Laplace transforms (complex dielectric functions) are determined by inversion of the D-to-E constitutive equation. By this procedure it is shown that dielectric functions of the dipolar dielectrics are tensor-valued Bernstein functions while the dielectric functions of the Drude-Lorentz type are tensor-valued negative definite functions. The properties of the complex dielectric permittivities are also determined for either class. The theory is applied to an exhaustive review of empirical response functions of real dielectric materials encountered in the literature. Each class of convolution kernels is consistent with existence of a conserved energy, but in one case a strictly dissipative energy can be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderssen, R.S., Husain, S.A., Loy, R.J.: Kohlrausch functions: Properties and applications. ANZIAM J. E45, C800–C816 (2004)

    MathSciNet  Google Scholar 

  2. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer, New York (1984)

    MATH  Google Scholar 

  3. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975)

    MATH  Google Scholar 

  4. Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, 2nd edn., vol. 2. Wiley, New York (1987)

    Google Scholar 

  5. Bordewijk, P.: Chem. Phys. Lett. 32, 592 (1975)

    Article  ADS  Google Scholar 

  6. Breuer, S., Onat, E.T.: On recoverable work in linear viscoelasticity. Z. Angew. Math. Phys. 15, 13–21 (1964)

    Google Scholar 

  7. Breuer, S., Onat, E.T.: On the determination of free energy in viscoelastic solids. Z. Angew. Math. Phys. 15, 185–191 (1964)

    Article  Google Scholar 

  8. Brillouin, L.: Wave Propagation and Group Velocity. Academic Press, San Diego (1960)

    MATH  Google Scholar 

  9. Coffey, W.T.: Dielectric relaxation: an overview. J. Mol. Liq. 114, 5–25 (2004)

    Article  Google Scholar 

  10. Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin Equation, 2nd edn. World-Scientific, Singapore (2004)

    MATH  Google Scholar 

  11. Davidson, D., Cole, R.: J. Chem. Phys. 9, 1484 (1951)

    Article  ADS  Google Scholar 

  12. Dieterich, W., Maass, P.: Non-Debye relaxations in disordered ionic solids. Chem. Phys. 284, 439–467 (2002)

    Article  ADS  Google Scholar 

  13. Doetsch, G.: Einführung in Theorie und Anwendung der Laplace Transformation. Birkhäuser, Basel (1958)

    MATH  Google Scholar 

  14. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon, Oxford (1986)

    Google Scholar 

  15. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    Google Scholar 

  16. Fabrizio, M., Golden, J.M.: Maximum and minimum free energies for a linear viscoelastic material. Q. Appl. Math. LX, 341–381 (2002)

    MathSciNet  Google Scholar 

  17. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  18. Feldman, Y., Puzenko, A., Ryabov, Y.: Non-Debye dielectric relaxation in complex materials. Chem. Phys. 284, 139–168 (2002)

    Article  ADS  Google Scholar 

  19. Feller, W.: Introduction to Probability. Theory and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  20. Figotin, A., Schenker, J.H.: Spectral theory of time dispersive and dissipative systems. J. Stat. Phys. 118, 199–263 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Figotin, A., Schenker, J.H.: Hamiltonian structure for dispersive and dissipative dynamical systems. J. Stat. Phys. 128, 969–1056 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Forst, G.: The Lévy-Hinčin representation of negative definite functions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34, 313–318 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fröhlich, H.: Theory of Dielectrics, 2nd edn. Clarendon, Oxford (1958)

    MATH  Google Scholar 

  24. Gesztesy, F., Tsekanovskii, E.: On matrix-valued Herglotz functions. Math. Nachr. 218, 61–138 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Glasgow, S., Ware, M., Peatross, J.: Poynting’s theorem and luminal total energy transport in passive dielectric media. Phys. Rev. E (3) 64, 046,610 (2001)

    Article  Google Scholar 

  26. Gripenberg, G., Londen, S.O., Staffans, O.J.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  27. Hanyga, A.: Well-posedness and regularity for a class of linear thermoviscoelastic materials. Proc. R. Soc. Lond. A 459, 2281–2296 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  28. Hanyga, A.: Physically acceptable viscoelastic models. In: Hutter, K., Wang, Y. (eds.) Trends in Applications of Mathematics to Mechanics, pp. 125–136. Shaker, Maastricht (2005)

    Google Scholar 

  29. Hanyga, A.: Viscous dissipation and completely monotone stress relaxation functions. Rheol. Acta 44, 614–621 (2005). doi:10.1007/s00397-005-0443-6

    Article  Google Scholar 

  30. Hanyga, A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. 19, 25–36 (2007). doi:10.1007/s00161-007-0042-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hanyga, A., Seredyńska, M.: Hamiltonian and Lagrangian theory of viscoelasticity. Contin. Mech. Thermodyn. (2008). doi:10.1007/s00161-007-0065-6

    Google Scholar 

  32. Hanyga, A., Seredyńska, M.: Relations between relaxation modulus and creep compliance in anisotropic linear viscoelasticity. J. Elast. 88, 41–61 (2007)

    Article  MATH  Google Scholar 

  33. Hanyga, A., Seredyńska, M.: A rigorous construction of maximum recoverable energy. Z. Angew. Math. Phys. (2007). doi:10.1007/s00033-007-7020-z

    Google Scholar 

  34. Havriliak, S., Havriliak, S.J.: Dielectric and Mechanical Relaxation in Materials. Analysis, Interpretation and Application to Polymers. Hanser, Munich (1997)

    Google Scholar 

  35. Hilfer, R.: Analytical representations for relaxation functions of glasses. J. Non-Cryst. Solids 305, 122–125 (2002)

    Article  ADS  Google Scholar 

  36. Husain, S.A., Anderssen, R.S.: Modelling the relaxation modulus of linear viscoelasticity using Kohlrausch functions. J. Non-Newton. Fluid Mech. 125, 159–170 (2005)

    Article  Google Scholar 

  37. Jäckle, J.: Rep. Prog. Physics 49, 171 (1986)

    Article  ADS  Google Scholar 

  38. Jackson, D.J.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  39. Jonscher, A.K.: Dielectric Relaxation in Solids. Chelsea, New York (1983)

    Google Scholar 

  40. Jonscher, A.K.: Universal Relaxation Law. Chelsea, New York (1996)

    Google Scholar 

  41. König, H., Meixner, J.: Lineare Systeme und lineare Transformationen. Math. Nachr. 19, 265–322 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kubo, R., Toda, N., Hashitsune, N.: Statistical Physics II: Nonequilibrium Statistical Physics, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  43. Lancaster, P.: Theory of Matrices. Academic Press, San Diego (1969)

    MATH  Google Scholar 

  44. Landau, L.D., Lifshits, E.M.: Pitaevski: Electrodynamics of Continuous Media. Pergamon, Oxford (1984). Translated from Russian

    Google Scholar 

  45. Lu, J.F., Hanyga, A.: Wave field simulation for heterogeneous porous media with a singular memory drag force. J. Comput. Phys. 208, 651–674 (2005). doi:10.1016/j.jcp.2005.03.008

    Article  MATH  ADS  Google Scholar 

  46. Lu, J.F., Hanyga, A.: Wave field simulation for heterogeneous transversely isotropic porous media with the JKD dynamic permeability. Comput. Mech. 36, 196–208 (2005). doi:10.1007/s00466-004-0653-3

    Article  MATH  Google Scholar 

  47. Lunkenheimer, P., Loidl, A.: Dielectric spectroscopy of glass-forming materials: α-relaxation and excess wing. Chem. Phys. 284, 205–219 (2002)

    Article  ADS  Google Scholar 

  48. Mikusiński, J.: On the function whose Laplace transform is exp (−s α λ). Stud. Math. 18, 191–198 (1959)

    MATH  Google Scholar 

  49. Montroll, E.W., Bendler, J.T.: On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation. J. Stat. Phys. 34, 129–162 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Morrison, P.J., Pfirsch, D.: Dielectric energy versus plasma energy. and Hamiltonian action-angle variables for the Vlasov equation. Phys. Fluids B 4, 3038–3057 (1992)

    MathSciNet  Google Scholar 

  51. Obukhov, Y.N., Hehl, F.W.: Electromagnetic energy-momentum and forces in matter. Phys. Lett. A 311, 277–284 (2003)

    Article  MATH  ADS  Google Scholar 

  52. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998)

    Google Scholar 

  53. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MATH  MathSciNet  Google Scholar 

  54. Scaife, B.K.P.: Principles of Dielectrics, 2nd edn. Oxford University Press, London (1998)

    Google Scholar 

  55. Schneider, W.R.: Completely monotone generalized Mittag-Leffler functions. Exp. Math. 14, 3–16 (1996)

    MATH  Google Scholar 

  56. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  57. Schwarzl, F.R., Struik, L.C.E.: Adv. Mol. Relax. Process. 1, 201 (1967)

    Article  Google Scholar 

  58. Staffans, O.J.: Well-posedness and stabilizability of a viscoelastic equation in energy space. Trans. Am. Math. Soc. 345, 527–575 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  59. Stallinga, S.: Energy and momentum of light in dielectric media. Phys. Rev. E (3) 73, 026606 (2006)

    Article  ADS  Google Scholar 

  60. Tip, A.: Linear absorptive dielectrics. Phys. Rev. A 57, 4818–4841 (1998)

    Article  ADS  Google Scholar 

  61. Tip, A.: Hamiltonian formalism for charged-particle systems interacting with absorptive dielectrics. Phys. Rev. A 69, 013804 (2004)

    Article  ADS  Google Scholar 

  62. Truesdell, C.A., Toupin, R.: The Classical Field Theories, vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  63. Vladimirov, V.S.: Generalized Functions in Mathematical Physics, 2nd edn. Mir, Moscow (1979) (in Russian)

    Google Scholar 

  64. Weron, A., Weron, K., Woyczynski, W.A.: Relaxation functions in dipolar materials. J. Stat. Phys. 78, 1027–1038 (1995)

    Article  MATH  ADS  Google Scholar 

  65. Weron, K., Kotulski, M.: On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Phys. A 232, 180–188 (1996)

    Article  Google Scholar 

  66. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  67. Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  68. Williams, G., Watts, D.C., Dev, S.B., North, A.M.: Further considerations of non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 67, 1323–1335 (1971)

    Article  Google Scholar 

  69. Zemanian, A.H.: Realizability Theory for Continuous Linear Systems. Academic Press, San Diego (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hanyga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A., Seredyńska, M. On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation. J Stat Phys 131, 269–303 (2008). https://doi.org/10.1007/s10955-008-9501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9501-7

Keywords

Navigation