Skip to main content
Log in

Curvilinear All-Atom Multiscale (CAM) Theory of Macromolecular Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A method is introduced for simulating long timescale macromolecular structural fluctuations and transitions with atomic-scale detail. The N-atom Liouville equation for the macromolecule/host medium system provides the starting point for the analysis. Order parameters characterizing overall macromolecular architecture are demonstrated to be slowly evolving.

For single-stranded macromolecules, a curvilinear coordinate provides a way to introduce the order parameters. Using a multiscale approach, Fokker–Planck equations are derived. A nanocanonical method for constructing the lowest order solution to the Liouville equation and the equivalence of long-time and ensemble averages avoid the tedious bookkeeping needed to preserve the number of degrees of freedom (required in earlier methods). The method overcomes the large energy barriers that plague other approaches for estimating rates of transition between macromolecular conformations. A reduced dynamics is derived for the friction dominated limit. New experimental methods for observing macromolecular dynamics and medical sciences applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durup, J.: Protein molecular-dynamics constrained to slow modes—theoretical approach based on a hierarchy of local modes with a set of holonomic constraints—the method and its tests on citrate synthase. J. Phys. Chem. 95(4), 1817–1829 (1991)

    Article  Google Scholar 

  2. Askar, A., Space, B., Rabitz, H.: Subspace method for long-time scale molecular-dynamics. J. Phys. Chem. 99(19), 7330–7338 (1995)

    Article  Google Scholar 

  3. Chun, H.M., Padilla, C.E., Chin, D.N., Watanabe, M.W., Karlov, V.I., Alper, H.E., Soosaar, K., Blair, K.B., Becker, O.M., Caves, L.S.D., Nagle, R., Haney, D.N., Farmer, B.L.: MBO(N)D: a multibody method for long-time molecular dynamics simulations. J. Comput. Chem. 21(3), 159–184 (2000)

    Article  Google Scholar 

  4. Elezgaray, J., Sanejouand, Y.H.: Modeling large-scale dynamics of proteins. Biopolymers 46(7), 493–501 (1998)

    Article  Google Scholar 

  5. Elezgaray, J., Sanejouand, Y.H.: Modal dynamics of proteins in water. J. Comput. Chem. 21(14), 1274–1282 (2000)

    Article  Google Scholar 

  6. Feenstra, K.A., Hess, B., Berendsen, H.J.C.: Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 20(8), 786–798 (1999)

    Article  Google Scholar 

  7. Phelps, D.K., Post, C.B.: A novel basis for capsid stabilization by antiviral compounds. J. Mol. Biol. 254(4), 544–551 (1995)

    Article  Google Scholar 

  8. Phelps, D.K., Rossky, P.J., Post, C.B.: Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. J. Mol. Biol. 276(2), 331–337 (1998)

    Article  Google Scholar 

  9. Reich, S.: Smoothed dynamics of highly oscillatory Hamiltonian systems. Physica D 89(1–2), 28–42 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sorensen, M.R., Voter, A.F.: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112(21), 9599–9606 (2000)

    Article  ADS  Google Scholar 

  11. Space, B., Rabitz, H., Askar, A.: Long-time scale molecular-dynamics subspace integration method applied to anharmonic crystals and glasses. J. Chem. Phys. 99(11), 9070–9079 (1993)

    Article  ADS  Google Scholar 

  12. Speelman, B., Brooks, B.R., Post, C.B.: Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys. J. 80(1), 121–129 (2001)

    Article  Google Scholar 

  13. Teleman, O., Jönsson, B.: Vectorizing a general-purpose molecular-dynamics simulation program. Comput. Chem. 7(1), 58–66 (1986)

    Article  Google Scholar 

  14. Tuckerman, M.E., Berne, B.J., Rossi, A.: Molecular-dynamics algorithm for multiple time scales-systems with disparate masses. J. Chem. Phys. 94(2), 1465–1469 (1991)

    Article  ADS  Google Scholar 

  15. Tuckerman, M.E., Berne, B.J.: Molecular-dynamics in systems with multiple time scales-systems with stiff and soft degrees of freedom and with short and long-range forces. J. Chem. Phys. 95(11), 8362–8364 (1991)

    Article  ADS  Google Scholar 

  16. Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Molecular-dynamics algorithm for multiple time scales-systems with long-range forces. J. Chem. Phys. 94(10), 6811–6815 (1991)

    Article  ADS  Google Scholar 

  17. Li, X., Hassan, S.A., Mehler, E.L.: Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties. Proteins 60(3), 464–484 (2005)

    Article  Google Scholar 

  18. Shen, M., Freed, K.F.: Long time dynamics of met-enkephalin: tests of mode-coupling theory and implicit solvent models. J. Chem. Phys. 118(11), 5143–5156 (2003)

    Article  ADS  Google Scholar 

  19. Miao, Y., Ortoleva, P.: All-atom multiscaling and new ensembles for dynamical nanoparticles. J. Chem. Phys. 125(4), 044901 (2006)

    Article  ADS  Google Scholar 

  20. Miao, Y., Ortoleva, P.: Viral structural transitions: an all-atom multiscale theory. J. Chem. Phys. 125(21), 214901 (2006)

    Article  ADS  Google Scholar 

  21. Shea, J.E., Oppenheim, I.: Fokker–Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath. J. Phys. Chem. 100(49), 19035–19042 (1996)

    Article  Google Scholar 

  22. Shea, J.E., Oppenheim, I.: Fokker–Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath. Physica A 247(1–4), 417–443 (1997)

    Article  ADS  Google Scholar 

  23. Peters, M.H.: Fokker–Planck equation and the grand molecular friction tensor for coupled rotational and translational motions of structured Brownian particles near structured surfaces. J. Chem. Phys. 110(1), 528–538 (1999)

    Article  ADS  Google Scholar 

  24. Peters, M.H.: Fokker–Planck equation, molecular friction, and molecular dynamics for Brownian particle transport near external solid surfaces. J. Stat. Phys. 94(3), 557–586 (1999)

    Article  MATH  Google Scholar 

  25. Ortoleva, P.: Nanoparticle dynamics: a multiscale analysis of the Liouville equation. J. Phys. Chem. 109(45), 21258–21266 (2005)

    Google Scholar 

  26. Peters, M.H.: The Smoluchowski diffusion equation for structural macromolecules near structured surfaces. J. Chem. Phys. 112(12), 5488–5498 (2000)

    Article  ADS  Google Scholar 

  27. Kloeden, P.E., Platen, E.: Numerical solution of Stochastic Differential Equations, 1st edn. Springer, Berlin (1992)

    MATH  Google Scholar 

  28. Haseltine, E.L., Rawling, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

    Article  ADS  Google Scholar 

  29. Puchalka, J., Kierzek, A.M.: Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys. J. 86(3), 1357–1372 (2004)

    ADS  Google Scholar 

  30. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)

    Article  ADS  Google Scholar 

  31. Fox, Jr., R.O., Richards, F.M.: A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300, 325–330 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ortoleva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shreif, Z., Ortoleva, P. Curvilinear All-Atom Multiscale (CAM) Theory of Macromolecular Dynamics. J Stat Phys 130, 669–685 (2008). https://doi.org/10.1007/s10955-007-9452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9452-4

Keywords

Navigation