Skip to main content
Log in

On the Energy Growth of Some Periodically Driven Quantum Systems with Shrinking Gaps in the Spectrum

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E n n α, with 0<α<1. In particular, the gaps between successive eigenvalues decay as n α−1. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate ‖V(t) m,n ‖≤ε|mn|pmax {m,n}−2γ for mn, where ε>0, p≥1 and γ=(1−α)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and ε is small enough. More precisely, for any initial condition Ψ∈Dom(H 1/2), the diffusion of energy is bounded from above as 〈H Ψ (t)=O(t σ), where \(\sigma=\alpha/(2\lceil p-1\rceil \gamma-\frac{1}{2})\) . As an application we consider the Hamiltonian H(t)=|p|α+ε v(θ,t) on L 2(S 1,dθ) which was discussed earlier in the literature by Howland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053–1070 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Astaburuaga, M.A., Bourget, O., Cortés, V.H., Fernández, C.: Floquet operators without singular continuous spectrum. J. Funct. Anal. 238, 489–517 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Barbaroux, J.M., Joye, A.: Expectation values of observables in time-dependent quantum mechanics. J. Stat. Phys. 90, 1225–1249 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bunimovich, L., Jauslin, H.R., Lebowitz, J.L., Pellegrinotti, A., Nielaba, P.: Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62, 793–817 (1991)

    Article  MathSciNet  Google Scholar 

  5. De Bièvre, S., Forni, G.: Transport properties of kicked and quasiperiodic Hamiltonians. J. Stat. Phys. 90, 1201–1223 (1998)

    Article  MATH  Google Scholar 

  6. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AXXB=Y. Bull. Lond. Math. Soc. 29, 1–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourget, O.: Singular continuous Floquet operators for systems with increasing gaps. J. Math. Anal. Appl. 276, 28–39 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bourget, O.: Singular continuous Floquet operator for periodic quantum systems. J. Math. Anal. Appl. 301, 65–83 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Combes, J.-M.: Connection between quantum dynamics and spectral properties of time-evolution operators. In: Ames, W.F., Harrell, E.M., Herod, J.V. (eds.) Differential Equations and Applications to Mathematical Physics, pp. 59–68. Academic Press, Boston (1993)

    Google Scholar 

  10. Combescure, M.: The quantum stability problem for time-periodic perturbations of the harmonic oscillator. Ann. Inst. Henri Poincaré 47, 62–82 (1987). Erratum: Ann. Inst. Henri Poincaré 47, 451–454 (1987)

    Google Scholar 

  11. Combescure, M.: Spectral properties of a periodically kicked quantum Hamiltonian. J. Stat. Phys. 59, 679–690 (1990)

    Article  MathSciNet  Google Scholar 

  12. Combescure, M.: Recurrent versus diffusive dynamics for a kicked quantum oscillator. Ann. Inst. Henri Poincaré 57, 67–87 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Duclos, P., Lev, O., Šťovíček, P., Vittot, M.: Progressive diagonalization and applications. In: Combes, J.-M., et al. (eds.) Operator Algebras and Mathematical Physics, pp. 75–88. The Theta Foundation, Bucharest (2003)

    Google Scholar 

  14. Duclos, P., Soccorsi, E., Šťovíček, P., Vittot, M.: Dynamical localization in periodically driven quantum systems. In: Boca, F.-P., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics, pp. 57–66. The Theta Foundation, Bucharest (2005)

    Google Scholar 

  15. Enss, V., Veselić, K.: Bound states and propagating states for time-dependent Hamiltonians. Ann. Inst. Henri Poincaré 39, 159–191 (1983)

    MATH  Google Scholar 

  16. Guarneri, I., Mantica, G.: On the asymptotic properties of quantum dynamics in the presence of a fractal spectrum. Ann. Inst. Henri Poincaré A 61, 369–379 (1994)

    MATH  MathSciNet  Google Scholar 

  17. Hagedorn, G.A., Loss, M., Slawny, J.: Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations. J. Phys. A: Math. Gen. 19, 521–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Howland, J.S.: Floquet operators with singular spectrum, I. Ann. Inst. Henri Poincaré 50, 309–323 (1989)

    MATH  MathSciNet  Google Scholar 

  19. Howland, J.S.: Floquet operators with singular spectrum, II. Ann. Inst. Henri Poincaré 50, 325–334 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Howland, J.S.: Floquet operators with singular spectrum, III. Ann. Inst. Henri Poincaré 69, 265–273 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Jauslin, H., Lebowitz, J.L.: Spectral and stability aspects of quantum chaos. Chaos 1, 114–121 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Joye, A.: Absence of absolutely continuous spectrum of Floquet operators. J. Stat. Phys. 75, 929–952 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Joye, A.: Upper bounds for the energy expectation in the time-dependent quantum mechanics. J. Stat. Phys. 85, 575–606 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krein, S.G.: Linear Differential Equations in Banach Spaces. American Mathematical Society, Providence (1971)

    Google Scholar 

  25. McCaw, J., McKellar, B.: On the continuous spectral component of the Floquet operator for a periodically kicked quantum system. J. Math. Phys. 46, 103503 (2005)

    Article  MathSciNet  Google Scholar 

  26. Nenciu, G.: Floquet operators without absolutely continuous spectrum. Ann. Inst. Henri Poincaré A 59, 91–97 (1993)

    MATH  MathSciNet  Google Scholar 

  27. Nenciu, G.: Adiabatic theory: stability of systems with increasing gaps. Ann. Inst. Henri Poincaré A 67, 411–424 (1997)

    MATH  MathSciNet  Google Scholar 

  28. de Oliveira, C.R.: Some remarks concerning stability for nonstationary quantum systems. J. Stat. Phys. 78, 1055–1065 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. de Oliveira, C.R., Simsen, M.S.: A Floquet operator with pure point spectrum and energy instability. Ann. Inst. Henri Poincaré (2007, to appear)

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Academic Press, San Diego (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Šťovíček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duclos, P., Lev, O. & Šťovíček, P. On the Energy Growth of Some Periodically Driven Quantum Systems with Shrinking Gaps in the Spectrum. J Stat Phys 130, 169–193 (2008). https://doi.org/10.1007/s10955-007-9419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9419-5

Keywords

Navigation