Skip to main content
Log in

Entropy Production in Thermostats II

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that an arbitrary Anosov Gaussian thermostat close to equilibrium has positive entropy poduction unless the external field E has a global potential. The configuration space is allowed to have any dimension and magnetic forces are also allowed. We also show the following non-perturbative result. Suppose a Gaussian thermostat satisfies \(K_w(\sigma)+\frac14|E_\sigma|^2<0\) for every 2-plane σ, where K w is the sectional curvature of the associated Weyl connection and \(E_\sigma\) is the orthogonal projection of E onto σ. Then the entropy production of any SRB measure is positive unless E has a global potential. A related non-perturbative result is also obtained for certain generalized thermostats on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Bonetto, G. Gentile and V. Mastropietro, Electric fields on a surface of constant negative curvature. Ergodic Theor. Dyn. Syst. 20:681–696 (2000).

    Google Scholar 

  • R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows. Invent. Math. 29:181–202 (1975).

    Google Scholar 

  • G. Contreras, Regularity of topological and metric entropy of hyperbolic flows. Math. Z. 210:97–111 (1992).

    Google Scholar 

  • C. B. Croke and V. A. Sharafutdinov, Spectral rigidity of a negatively curved manifold. Topology 37:1265–1273 (1998).

    Google Scholar 

  • N. I. Chernov, G. L. Eyink, J. L. Lebowitz and Y. G. Sinaï, Steady-state electrical conduction in the periodic Lorentz gas. Comm. Math. Phys. 154:569–601 (1993).

    Google Scholar 

  • N. S. Dairbekov and G. P. Paternain, Entropy production in Gaussian thermostats. Comm. Math. Phys. 269:533–543 (2007).

    Google Scholar 

  • N. S. Dairbekov and G. P. Paternain, Rigidity properties of Anosov optical hypersurfaces. Preprint arXiv:math.DS/0508316.

  • N. S. Dairbekov and V. A. Sharafutdinov, Some problems of integral geometry on Anosov manifolds. Ergodic Theor. Dynam. Syst. 23:59–74 (2003).

    Google Scholar 

  • J. Franks and B. Williams, Anomalous Anosov flows. Global theory of dynamical systems (Proc. Internat. Conf., Northwestern University, Evanston, Ill., 1979), pp. 158–174, Lecture Notes in Math., 819, Springer, Berlin (1980).

  • G. Gallavotti, Reversible Anosov diffeomorphisms and large deviations. Math. Phys. Electron. J. 1:1–12 (1995).

    Google Scholar 

  • G. Gallavotti, New methods in nonequilibrium gases and fluids. Open Sys. Inf. Dyn. 6:101–136 (1999).

    Google Scholar 

  • G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74:2694–2697 (1995).

    Google Scholar 

  • G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states. J. Statist. Phys. 80:931–970 (1995).

    Google Scholar 

  • G. Gallavotti and D. Ruelle, SRB states and nonequilibrium statistical mechanics close to equilibrium. Comm. Math. Phys. 190:279–281 (1997).

    Google Scholar 

  • G. Gentile, Large deviation rule for Anosov flows. Forum Math. 10:89–118 (1998).

    Google Scholar 

  • E. Ghys, Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergodic Theor. Dyn. Syst. 4:67–80 (1984).

    Google Scholar 

  • V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds. Topology 19:301–312 (1980).

    Google Scholar 

  • W. G. Hoover, Molecular Dynamics, Lecture Notes in Phys. 258, Springer (1986).

  • A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54 (Cambridge University Press, 1995).

  • A. Katsuda and T. Sunada, Closed orbits in homology classes. Inst. Hautes Études Sci. Publ. Math. 71: 5–32 (1990).

    Google Scholar 

  • R. de la Llave, J. M. Marco and R. Moriyon, Canonical perturbation theory of Anosov systems and regularity for the Livsic cohomology equation. Ann. Math. 123:537–611 (1986).

    Google Scholar 

  • G. P. Paternain, Magnetic rigidity of horocycle flows. Pacific J. Math. 225:301–323 (2006).

    Google Scholar 

  • G. P. Paternain, Geodesic flows. Progress in Mathematics, 180 (Birkäuser, 1999).

  • L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature. Siberian Math. J. 29(3):427–441 (1988).

    Google Scholar 

  • M. Pollicott, On the rate of mixing of Axiom A flows. Invent. Math. 81:413–426 (1985).

    Google Scholar 

  • M. Pollicott, Derivatives of topological entropy for Anosov and geodesic flows. J. Diff. Geom. 39:457–489 (1994).

    Google Scholar 

  • M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature. Israel J. Math. 16:181–197 (1973).

    Google Scholar 

  • D. Ruelle, Resonances for Axiom A flows. J. Diff. Geom. 25:99–116 (1987).

    Google Scholar 

  • D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics. J. Statist. Phys. 85:1–23 (1996).

    Google Scholar 

  • D. Ruelle, Differentiation of SRB states. Comm. Math. Phys. 187:227–241 (1997). Correction and complements. Comm. Math. Phys. 234:185–190 (2003).

    Google Scholar 

  • D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Statist. Phys. 95:393–468 (1999).

    Google Scholar 

  • D. Ruelle, Differentiation of SRB states for hyperbolic flows. Preprint arXiv:math.DS/0408097.

  • V. A. Sharafutdinov, Integral Geometry of Tensor Fields (VSP, Utrecht, the Netherlands, 1994).

  • V. A. Sharafutdinov and G. Uhlmann, On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points. J. Diff. Geom. 56:93–110 (2000).

    Google Scholar 

  • R. Sharp, Closed orbits in homology classes for Anosov flows. Ergodic Theor. Dynam. Syst. 13:387–408 (1993).

    Google Scholar 

  • M. P. Wojtkowski, Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fund. Math. 163:177–191 (2000).

    Google Scholar 

  • M. P. Wojtkowski, W-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. 79:953–974 (2000).

    Google Scholar 

  • M. P. Wojtkowski and C. Liverani, Conformally symplectic dynamics and symmetry of the Lyapunov spectrum. Comm. Math. Phys. 194:47–60 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurlan S. Dairbekov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dairbekov, N.S., Paternain, G.P. Entropy Production in Thermostats II. J Stat Phys 127, 887–914 (2007). https://doi.org/10.1007/s10955-007-9301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9301-5

Keywords

Navigation