Skip to main content
Log in

Sensitive Dependence of Geometric Gibbs States at Positive Temperature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give the first example of a smooth family of real and complex maps having sensitive dependence of geometric Gibbs states at positive temperature. This family consists of quadratic-like maps that are non-uniformly hyperbolic in a strong sense. We show that for a dense set of maps in the family the geometric Gibbs states do not converge at positive temperature. These are the first examples of non-convergence at positive temperature in statistical mechanics or the thermodynamic formalism, and answers a question of van Enter and Ruszel. We also show that this phenomenon is robust: There is an open set of analytic 2-parameter families of quadratic-like maps that exhibit sensitive dependence of geometric Gibbs states at positive temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334(2), 719–742 (2015)

  2. Baladi V., Benedicks M., Schnellmann D.: Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201(3), 773–844 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Burns, K., Climenhaga, V., Fisher, T., Thompson, D.J.: Unique equilibrium states for geodesic flows in nonpositive curvature. ArXiv e-prints (2017)

  4. Bissacot R., Garibaldi E., Thieullen P.: Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergod. Theory Dyn. Syst. 38(3), 863–885 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruin H., Leplaideur R.: Renormalization, thermodynamic formalism and quasi-crystals in subshifts. Commun. Math. Phys. 321(1), 209–247 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bruin H., Leplaideur R.: Renormalization, freezing phase transitions and Fibonacci quasicrystals. Ann. Sci. Éc. Norm. Supér. (4) 48(3), 739–763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Binder I., Makarov N., Smirnov S.: Harmonic measure and polynomial Julia sets. Duke Math. J. 117(2), 343–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Springer, Berlin (1975)

  9. Bruin, H., Terhesiu, D., Todd, M.: The pressure function for infinite equilibrium measures. ArXiv e-prints (2017)

  10. Carleson, L., Gamelin, T.W.: Complex dynamics. Universitext: Tracts in Mathematics. Springer, New York (1993)

  11. Chazottes J.-R., Hochman M.: On the zero-temperature limit of Gibbs states. Commun. Math. Phys. 297(1), 265–281 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Climenhaga V.: Specification and towers in shift spaces. Commun. Math. Phys. 364(2), 441–504 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Coronel, D., Rivera-Letelier, J.: Sensitive dependence of geometric Gibbs states. ArXiv e-prints (2017)

  14. Coronel D., Rivera-Letelier J.: Low-temperature phase transitions in the quadratic family. Adv. Math. 248, 453–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coronel D., Rivera-Letelier J.: High-order phase transitions in the quadratic family. J. Eur. Math. Soc. (JEMS) 17(11), 2725–2761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coronel D., Rivera-Letelier J.: Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys. 160(6), 1658–1683 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Chung, Y. Moo, Rivera-Letelier, J., Takahasi, H.: Large deviation principle in one-dimensional dynamics. ArXiv e-prints (2016)

  18. Díaz L.J., Gelfert K., Rams M.: Abundant rich phase transitions in step-skew products. Nonlinearity 27(9), 2255–2280 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes. Partie I, volume 84 of Publications Mathématiques d’Orsay [Mathematical Publications of Orsay]. Université de Paris-Sud, Département de Mathématiques, Orsay (1984)

  20. Douady A., Hubbard J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(2), 287–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. de Melo, W., van Strien, S.: One-dimensional dynamics, volume 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1993)

  22. Dobbs N.: Measures with positive Lyapunov exponent and conformal measures in rational dynamics. Trans. Am. Math. Soc. 364(6), 2803–2824 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dobbs N.: Pesin theory and equilibrium measures on the interval. Fundam. Math. 231(1), 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gelfert K., Przytycki F., Rams M.: On the Lyapunov spectrum for rational maps. Math. Ann. 348(4), 965–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gelfert K., Przytycki F., Rams M.: Lyapunov spectrum for multimodal maps. Ergod. Theory Dyn. Syst. 36(5), 1441–1493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Herbut I.: A Modern Approach to Critical Phenomena. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  27. Kloeckner, B.: An optimal transportation approach to the decay of correlations for non-uniformly expanding maps. ArXiv e-prints (2017)

  28. Keller G., Nowicki T.: Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps. Commun. Math. Phys. 149(1), 31–69 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Li H., Rivera-Letelier J.: Equilibrium states of interval maps for hyperbolic potentials. Nonlinearity 27(8), 1779–1804 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Li H., Rivera-Letelier J.: Equilibrium states of weakly hyperbolic one-dimensional maps for H ölder potentials. Commun. Math. Phys. 328(1), 397–419 (2014)

    Article  MATH  ADS  Google Scholar 

  31. Milnor, J.: Periodic orbits, externals rays and the Mandelbrot set: an expository account. Astérisque, (261):xiii, 277–333, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995)

  32. Milnor, J.: Dynamics in One Complex Variable, volume 160 of Annals of Mathematics Studies, 3rd ed. Princeton University Press, Princeton, NJ (2006)

  33. Nowicki T., Sands D.: Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132(3), 633–680 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Oh, H., Winter, D.: Prime number theorems and holonomies for hyperbolic rational maps. Invent. Math. 208, 401–440 (2017)

  35. Przytycki, F., Rivera-Letelier, J.: Geometric pressure for multimodal maps of the interval. Mem. Am. Math. Soc. (to appear) ArXiv e-prints (2014)

  36. Przytycki F., Rivera-Letelier J.: Nice inducing schemes and the thermodynamics of rational maps. Commun. Math. Phys. 301(3), 661–707 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Przytycki F., Rivera-Letelier J., Smirnov S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29–63 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Przytycki, F.: Thermodynamic formalism methods in one-dimensional real and complex dynamics. In: Proceedings of International Congress of Mathematicians, pp. 2081–2106 (2018)

  39. Rivera-Letelier, J.: Asymptotic expansion of smooth interval maps. ArXiv e-prints (2012)

  40. Roesch, P.: Holomorphic motions and puzzles (following M. Shishikura). In: The Mandelbrot set, theme and variations, volume 274 of London Mathematical Society Lecture Note Series, pp. 117–131. Cambridge University Press, Cambridge (2000)

  41. Ruelle D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sinaĭ J.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27(4(166)), 21–64 (1972)

    MathSciNet  MATH  Google Scholar 

  43. Velozo, A.: Phase transitions for geodesic flows and the geometric potential. ArXiv e-prints (2017)

  44. van Enter A.C.D., Ruszel W.M.: Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127(3), 567–573 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Varandas P., Viana M.: Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 555–593 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for the comments and pointers to the literature. The first named author acknowledges partial support from FONDECYT Grant 1161221, and would like to thank the University of Rochester for its hospitality. The second named author acknowledges partial support from NSF Grant DMS-1700291, and would like to thank Universidad Andrés Bello for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rivera-Letelier.

Additional information

Communicated by C. Liverani

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronel, D., Rivera-Letelier, J. Sensitive Dependence of Geometric Gibbs States at Positive Temperature. Commun. Math. Phys. 368, 383–425 (2019). https://doi.org/10.1007/s00220-019-03350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03350-6

Navigation