Skip to main content
Log in

Monte Carlo Simulation of Hard Hyperspheres in Six, Seven and Eight Dimensions for Low to Moderate Densities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The pair correlation function of hard hyperspheres in six, seven and eight dimensions is obtained from Monte Carlo simulations. The value of the pair correlation function at contact is compared with the results from molecular dynamics calculations and a variety of theoretical approaches. Remarkably good agreement is found with the simple, closed-form equations of Y. Song, E. A. Mason and R. M. Stratt, J. Phys. Chem., 93:6916–6919 (1989). The Monte Carlo results for the equation of state are compared with the theoretical expressions of M. Baus and J. L. Colot, Phys. Rev. A, 36:3912 (1987), M. Luban and J. P. J. Michels, Phys. Rev A, 41:6796 (1990), and high order virial expansions. In addition, in seven dimensions, comparisons are made with the exact PY solution provided by M. Robles, M. L. de Haro and A. Santos, J. Chem. Phys., 120:9113 (2004). Very good agreement was observed between theory and computer simulation in all dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Frisch, N. Rivier, and D.Wyler, Classical Hard-Sphere Fluid in InfinitelyMany Dimensions. Phys. Rev. Lett. 54:2061–2063 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. L. Frisch and J. K. Percus, Nonuniform classical fluid at high dimensionality. Phys. Rev. A 35:4696–4702 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. L. Frisch and J. K. Percus, High dimensionality as an organizing device for classical fluids. Phys. Rev. E 60:2942–2948 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Song, E. A. Mason, and R. M. Stratt, Why does the Carnahan-Starling equation work so well? J. Phys. Chem. 93:6916–6919 (1989).

    Article  Google Scholar 

  5. M. Bishop, P. A. Whitlock, and D. Klein, The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 122:074508-1-7 (2005).

    Google Scholar 

  6. M. Bishop and P. A. Whitlock, The equation of state of hard hyperspheres in four and five dimensions. J. Chem. Phys. 123:014507-1-3 (2005).

    Article  ADS  Google Scholar 

  7. M. Luban and A. Baram, Third and fourth virial coefficients of hard hyperspheres of arbitrary dimensionality. J. Chem. Phys. 76:3233–3241 (1982).

    Article  ADS  Google Scholar 

  8. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  9. D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).

    Google Scholar 

  10. N. Clisby and B. M. McCoy, Analytical Calculation of B 4 for Hard Spheres in Even Dimensions. J. Stat. Phys. 114:1343–1361 (2004).

    Article  MathSciNet  Google Scholar 

  11. I. Lyberg, The fourth virial coefficent of a fluid of hard spheres in odd dimensions. J. Stat. Phys. 119:747–764 (2005).

    Article  MathSciNet  Google Scholar 

  12. N. Clisby and B. M. McCoy, Negative virial coefficients and the dominance of loose packed diagrams for D-dimensional hard spheres. J. Stat. Phys. 114:1361–1392 (2004).

    Article  MathSciNet  Google Scholar 

  13. M. Bishop, A. Masters, and J. H. R. Clarke, Equation of state of hard and Weeks-Chandler-Anderson hyperspheres in four and five dimensions. J. Chem. Phys. 110:11449–11453 (1999).

    Article  ADS  Google Scholar 

  14. N. Clisby and B. M. McCoy, New results for virial coefficients of hard spheres in D-dimensions. Pramana-J. Phys. 64:775–783 (2005).

    ADS  Google Scholar 

  15. N. Clisby, Negative virial coefficients for hard spheres. Ph.D. Thesis, Department of Physics, SUNY at Stony Brook (2004).

  16. M. Bishop, A. Masters, and A. Yu. Vlasov, Higher virial coefficients of four and five dimensional hard hyperspheres. J. Chem. Phys. 121:6884–6886 (2004).

    Article  ADS  Google Scholar 

  17. M. Bishop, A. Masters, and A. Yu. Vlasov, The eighth virial coefficient of four- and five-dimensional hard hyperspheres. J. Chem. Phys. 122:154502-1-2 (2005).

    Google Scholar 

  18. N. Clisby and B. M. McCoy, Ninth and tenth order virial coefficients for hard spheres in D-dimensions. J. Stat. Phys. 122:15–57 (2006).

    Article  MathSciNet  Google Scholar 

  19. G. A. Baker and P. Graves-Morris, Padé Approximants (Cambridge University Press, Cambridge, 1996).

    MATH  Google Scholar 

  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  21. M. Baus and J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres or hyperspheres from rescaled virial expansions. Phys. Rev. A 36:3912–3925 (1987).

    Article  ADS  Google Scholar 

  22. M. Luban and J. P. J. Michels, Equation of state of hard D-dimensional hyperspheres. Phys. Rev A 41:6796–6804 (1990).

    Article  ADS  Google Scholar 

  23. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–1092 (1953).

    Article  Google Scholar 

  24. B. L. Holian, O. E. Percus, T. T. Warnock, and P. A. Whitlock, Pseudorandom number generator for massively parallel molecular dynamics simulations. Phys. Rev. E 50:1607–1615 (1994).

    Article  ADS  Google Scholar 

  25. T. Gurov and P. A. Whitlock, Investigation of the sensitivity of the Monte Carlo solution for the Barker-Ferry equation using different sequential and parallel pseudorandom number generators. In Lecture Notes in Computer Science, Number 3039, M. Bubak, G.D. van Albada, and P.M.A. Sloot (eds.) (Springer Verlag, Heidelberg, 2004).

  26. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1993).

    Google Scholar 

  27. B. Quentrec and C. Brot, New method for searching for neighbors in molecular dynamics computations. J. Comp. Phys. 13:430–432 (1973).

    Article  Google Scholar 

  28. K. Ying, D. Arnow, and D. Clark, Evaluating Communication Protocols for WebComputing. In Proceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques and Applications, CSREA Press, Las Vegas, June, 1999.

  29. D. Arnow, G. Weiss, K. Ying, and D. Clark, SWC:A Small Framework for WebComputing. In Proceedings of the International Conference on Parallel Computing, Delft, Netherlands, August, 1999.

  30. P. A. Whitlock, M. Bishop, and D. Klein, Small Web Computing Applied to Distributed Monte Carlo Calculations. In Lecture Notes in Computer Science, Number 3993, V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, and J. Dongarra (eds.) (Springer Verlag, Heidelberg, 2006).

  31. J. M. Haile, Molecular Dynamics Simulation (John-Wiley and Sons, New York, 1992).

    Google Scholar 

  32. R. Kubo, Statistical Mechanics (North-Holland, Amsterdam, 1965).

    MATH  Google Scholar 

  33. M. Robles, M. L. de Haro, and A. Santos, Equation of state of a seven-dimensional hard-sphere fluid. Percus-Yevick theory and molecular-dynamics simulations. J. Chem. Phys. 120:9113–9122 (2004).

    Article  Google Scholar 

  34. L. Lue and M. Bishop, Molecular Dynamics Study of the Thermodynamics and Transport Coefficients of Hard Hyperspheres in Six and Seven Dimensions. Phys. Rev. E 74:021201-1-6 (2006).

    Article  ADS  Google Scholar 

  35. N. F. Carnahan and K. E. Starling, Equation of state of nonattracting rigid spheres. J. Chem. Phys. 51:635–636 (1969).

    Article  Google Scholar 

  36. A. Santos, An equation of state á la Carnahan-Starling for a five-dimensional fluid of hard hyperspheres. J. Chem. Phys. 112:10680–10681 (2000).

    Article  ADS  Google Scholar 

  37. L. Lue and M. Bishop, Private Communication.

  38. L. Tonks, The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres. Phys. Rev. 50:955–963 (1936).

    Article  ADS  Google Scholar 

  39. B. J. Alder and T. E. Wainwright, Phase Transition in Elastic Disks. Phys. Rev. 127:359–361 (1962).

    Article  ADS  Google Scholar 

  40. W. W. Wood, Physics of Simple Liquids. H.N.V. Temperley, J.S. Rowlinson, and G.S. Rushbrooke (eds.) (North-Holland, Amsterdam, 1968).

  41. B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27:1208–1211 (1957).

    Article  Google Scholar 

  42. W. W. Wood and J. D. Jacobson, Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. J. Chem. Phys. 27:1207 (1957).

    Article  Google Scholar 

  43. J. P. J. Michels and N. J. Trappeniers, Dynamical Computer Simulations on Hard Hyperspheres in Four- and Five-Dimensional Space. Phys. Lett. 104:425–429 (1984).

    Article  Google Scholar 

  44. J. L. Colot and M. Baus, The Freeezing of Hard Disks and Hyperspheres. Phys. Lett. A 119:135–139 (1986).

    Article  ADS  Google Scholar 

  45. B. Bagchi and S. A. Rice, On the stability of the infinite dimensional fluid of hard hyperspheres: a statistical mechanical estimate of the density of closest packing of simple hypercubic lattices in spaces of large dimensionality. J. Chem. Phys. 88:1177–1184 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  46. R. Finken, M. Schmidt, and H. Lowen, Freeezing transition of hard hyperspheres. Phys. Rev. E 65:016108-1-9 (2001).

    Article  ADS  Google Scholar 

  47. M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Packing Hyperspheres in high-dimensional Euclidean spaces. Phys. Rev. E 74: 041127-1-11 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, M., Whitlock, P.A. Monte Carlo Simulation of Hard Hyperspheres in Six, Seven and Eight Dimensions for Low to Moderate Densities. J Stat Phys 126, 299–314 (2007). https://doi.org/10.1007/s10955-006-9266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9266-9

Keywords

Navigation