Skip to main content
Log in

A Relativistic Version of the Ghirardi–Rimini–Weber Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Carrying out a research program outlined by John S. Bell in 1987, we arrive at a relativistic version of the Ghirardi-Rimini-Weber (GRW) model of spontaneous wavefunction collapse. The GRW model was proposed as a solution of the measurement problem of quantum mechanics and involves a stochastic and nonlinear modification of the Schrödinger equation. It deviates very little from the Schrödinger equation for microscopic systems but efficiently suppresses, for macroscopic systems, superpositions of macroscopically different states. As suggested by Bell, we take the primitive ontology, or local beables, of our model to be a discrete set of space-time points, at which the collapses are centered. This set is random with distribution determined by the initial wavefunction. Our model is nonlocal and violates Bell’s inequality though it does not make use of a preferred slicing of space-time or any other sort of synchronization of spacelike separated points. Like the GRW model, it reproduces the quantum probabilities in all cases presently testable, though it entails deviations from the quantum formalism that are in principle testable. Our model works in Minkowski space-time as well as in (well-behaved) curved background space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Allori, S. Goldstein, R. Tumulka and N. Zanghì, On the Common Structure of Bohmian Mechanics and the Ghirardi-Rimini-Weber Theory, quant-ph/0603027.

  2. A. Aspect, J. Dalibard and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49:1804–1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Bassi and G. C. Ghirardi, Dynamical reduction models. Phys. Rep. 379:257–427 (2003) and quant-ph/0302164.

    Article  ADS  MathSciNet  Google Scholar 

  4. J. S. Bell, Are there quantum jumps?, in Schrödinger. Centenary celebration of a polymath, C. W. Kilmister (ed.), p. 41–52. Cambridge: Cambridge University Press (1987). Reprinted in Ref. 5, p. 201–212.

    Google Scholar 

  5. J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  6. J. S. Bell, Towards an exact quantum mechanics. In S. Deser and R. J. Finkelstein, (eds.), Themes in contemporary physics, II, pp. 1–26. (World Scientific, Teaneck, NJ, 1989).

    Google Scholar 

  7. K. Berndl, D. Dürr, S. Goldstein and N. Zanghì, Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53:2062–2073 (1996) and quant-ph/9510027.

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Bohm, Comments on an Article of Takabayasi concerning the Formulation of Quantum Mechanics with Classical Pictures. Progr. Theoret. Phys. 9:273–287 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, London, 1993).

    Google Scholar 

  10. C. Dewdney and G. Horton, A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. J. Phys. A: Math. Gen. 34:9871–9878 (2001) and quant-ph/0110007.

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Diósi, Relativistic theory for continuous measurement of quantum fields. Phys. Rev. A 42: 5086–5092 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Dove, Explicit Wavefunction Collapse and Quantum Measurement, Ph.D. thesis, Department of Mathematical Sciences, University of Durham (1996).

  13. C. Dove and E. J. Squires, A Local Model of Explicit Wavefunction Collapse, quant-ph/9605047.

  14. F. Dowker and J. Henson, Spontaneous collapse models on a lattice. J. Statist. Phys. 115:1327–1339 (2004) and quant-ph/0209051.

    Article  MathSciNet  Google Scholar 

  15. F. Dowker and I. Herbauts, Simulating causal collapse models, Class. Quantum Gravity 21:2963–2980 (2004) and quant-ph/0401075.

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Dürr, S. Goldstein, K. Münch-Berndl and N. Zanghì, Hypersurface Bohm-Dirac models. Phys. Rev. A 60:2729–2736 (1999) and quant-ph/9801070.

    Article  ADS  Google Scholar 

  17. D. Dürr and P. Pickl, Flux-across-surfaces theorem for a dirac particle. J. Math. Phys. 44: 423–456 (2003) and math-ph/0207010.

    Article  ADS  MathSciNet  Google Scholar 

  18. G. C. Ghirardi, R. Grassi, and P. Pearle, Relativistic dynamical reduction models: general framework and examples. Found. Phys. 20:1271–1316 (1990)

    Article  MathSciNet  Google Scholar 

  19. G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34: 470–491 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Goldstein and R. Tumulka, Opposite arrows of time can reconcile relativity and nonlocality. Class. Quantum Gravity 20:557–564 (2003) and quant-ph/0105040.

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Kent, Quantum jumps and indistinguishability. Modern Phys. Lett. A 4(19):1839–1845 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Maudlin, Non-local correlations in quantum theory: Some ways the trick might be done. In: Q. Smith and W. L. Craig, (eds.), to appear in Einstein, Relativity, and Absolute Simultaneity (Routledge, London, 2007).

    Google Scholar 

  23. O. Nicrosini and A. Rimini, Relativistic spontaneous localization: a proposal. Found. Phys. 33:1061–1084 (2003) and quant-ph/0207145.

    Article  MathSciNet  Google Scholar 

  24. P. Pearle, Toward a relativistic theory of statevector reduction. In A. I. Miller, (ed.), Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Physics (volume 226 of NATO ASI Series B, p. 193–214. Plenum Press, New York, 1990).

    Google Scholar 

  25. P. Pearle, Relativistic collapse model with tachyonic features. Phys. Rev. A 59: 80–101 (1999) and quant-ph/9902046.

    Article  ADS  MathSciNet  Google Scholar 

  26. T. M. Samols, A stochastic model of a quantum field theory. J. Statist. Phys. 80:793–809 (1995) and hep-th/9501117.

    Article  MathSciNet  Google Scholar 

  27. T. M. Samols, A realistic formulation of quantum field theory. In J. Cushing, A. Fine, and S. Goldstein, (eds.), Bohmian mechanics and quantum theory: an appraisal (volume 184 of Boston Stud. Philos. Sci., pp. 191–196. Kluwer Acad. Publ., Dordrecht, 1996).

    Google Scholar 

  28. S. Teufel and R. Tumulka, Simple proof for global existence of Bohmian trajectories. Commun. Math. Phys. 258:349–365 (2005) and math-ph/0406030.

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Tumulka, Collapse and relativity. In A. Bassi, D. Dürr, T. Weber and N. Zanghì, (eds.), Quantum Mechanics: Are there Quantum Jumps? and On the Present Status of Quantum Mechanics, AIP Conference Proceedings 844, 340–352. American Institute of Physics (2006) and quant-ph/0602208.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich Tumulka.

Additional information

PACS numbers: 03.65.Ta; 03.65.Ud; 03.30.+p.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumulka, R. A Relativistic Version of the Ghirardi–Rimini–Weber Model. J Stat Phys 125, 821–840 (2006). https://doi.org/10.1007/s10955-006-9227-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9227-3

Keywords

Navigation