Skip to main content
Log in

Relativistic Stochastic Mechanics II: Reduced Fokker-Planck Equation in Curved Spacetime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The general covariant Fokker-Planck equations associated with the two different versions of covariant Langevin equation in Part I of this series of work are derived, both lead to the same reduced Fokker-Planck equation for the non-normalized one particle distribution function (1PDF). The relationship between various distribution functions is clarified in this process. Several macroscopic quantities are introduced by use of the 1PDF, and the results indicate an intimate connection with the description in relativistic kinetic theory. The concept of relativistic equilibrium state of the heat reservoir is also clarified, and, under the working assumption that the Brownian particle should approach the same equilibrium distribution as the heat reservoir in the long time limit, a general covariant version of Einstein relation arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This research has no associated data.

References

  1. Cai, Y., Wang, T., Zhao, L.: Relativistic stochastic mechanics I: Langevin equation from observer’s perspective. arXiv preprint (2023) [arxiv:2306.01982]

  2. Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348(5), 810–820 (1914). https://doi.org/10.1002/andp.19143480507

    Article  Google Scholar 

  3. Planck, V.M.: Über einen satz der statistischen dynamik und seine erweiterung in der quantentheorie. https://books.google.com.hk/books?id=Sf4wGwAACAAJ Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin (1917)

  4. Kolmogoroff, A.: Über die analytischen methoden in der wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931). https://doi.org/10.1007/BF01457949

    Article  MathSciNet  MATH  Google Scholar 

  5. Klein, O.: Zur statistischen Theorie der Suspensionen und Losungen, vol. 16. Hochschule Stockholm, Stockholm (1921)

    MATH  Google Scholar 

  6. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940). https://doi.org/10.1016/S0031-8914(40)90098-2

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1 (1943). https://doi.org/10.1103/RevModPhys.15.1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Itô, K.: On stochastic differential equations. Math. Soc. (1951) ISBN:9780821812044. No. 4. https://doi.org/10.1090/memo/0004American

  9. Øksendal, B.: Stochastic differential equations. https://doi.org/10.1007/978-3-642-14394-6. Springer, ISBN:9783642143946 (2003)

  10. Dudley, R.M.: Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6(3), 241–268 (1966). https://doi.org/10.1007/BF02592032

    Article  MathSciNet  MATH  Google Scholar 

  11. Hakim, R.: Relativistic stochastic processes. J. Math. Phys. 9(11), 1805–1818 (1968). https://doi.org/10.1063/1.1664513

    Article  MATH  ADS  Google Scholar 

  12. Dudley, R.M.: A note on lorentz-invariant Markov processes. Arkiv för Matematik 6(6), 575–581 (1967). https://doi.org/10.1007/978-1-4419-5821-1_8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Hakim, R.: A covariant theory of relativistic Brownian motion I. local equilibrium. J. Math. Phys. 6(10), 1482–1495 (1965). https://doi.org/10.1063/1.1704685

    Article  MathSciNet  ADS  Google Scholar 

  14. Debbasch, F., Mallick, K., Rivet, J.P.: Relativistic Ornstein-Uhlenbeck process. J. Stat. Phys. 88(3), 945–966 (1997). https://doi.org/10.1023/B:JOSS.0000015180.16261.53

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Barbachoux, C., Debbasch, F., Rivet, J.P.: The spatially one-dimensional relativistic Ornstein-Uhlenbeck process in an arbitrary inertial frame. Eur. Phys. J. B 19(1), 37–47 (2001). https://doi.org/10.1007/s100510170348

    Article  MATH  ADS  Google Scholar 

  16. Barbachoux, C., Debbasch, F., Rivet, J.P.: Covariant Kolmogorov equation and entropy current for the relativistic Ornstein-Uhlenbeck process. Eur. Phys. J. B 23(4), 487–496 (2001). https://doi.org/10.1007/s100510170040

    Article  MATH  ADS  Google Scholar 

  17. Dunkel, J., Hänggi, P.: Theory of relativistic Brownian motion: the (1+1)-dimensional case. Phys. Rev. E 71(1), 016124 (2005). https://doi.org/10.1103/PhysRevE.71.016124. [arxiv:cond-mat/0411011]

    Article  MathSciNet  ADS  Google Scholar 

  18. Dunkel, J., Hänggi, P.: Theory of relativistic Brownian motion: the (1+3)-dimensional case. Phys. Rev. E 72(3), 036106 (2005). https://doi.org/10.1103/PhysRevE.72.036106. [arxiv:cond-mat/0505532]

    Article  MathSciNet  ADS  Google Scholar 

  19. Dunkel, J., Hänggi, P.: Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation. Phys. Rev. E 74(5), 051106 (2006). https://doi.org/10.1103/PhysRevE.74.051106. [arxiv:cond-mat/0607082]

    Article  MathSciNet  ADS  Google Scholar 

  20. Dunkel, J., Hänggi, P.: One-dimensional non-relativistic and relativistic Brownian motions: a microscopic collision model. Physica A 374(2), 559–572 (2007). https://doi.org/10.1016/j.physa.2006.07.013. [arxiv:cond-mat/0606487]

    Article  ADS  Google Scholar 

  21. Dunkel, J., Hänggi, P.: Relativistic Brownian motion. Phys. Rep. 471(1), 1–73 (2009). https://doi.org/10.1016/j.physrep.2008.12.001. [arxiv:0812.1996]

    Article  MathSciNet  ADS  Google Scholar 

  22. Herrmann, J.: Diffusion in the general theory of relativity. Phys. Rev. D 82(2), 024026 (2010). https://doi.org/10.1103/PhysRevD.82.024026. [arxiv:1003.3753]

    Article  MathSciNet  ADS  Google Scholar 

  23. Haba, Z.: Relativistic diffusion with friction on a pseudo-Riemannian manifold. Class. Quant. Gravity 27(9), 095021 (2010). https://doi.org/10.1088/0264-9381/27/9/095021. [arxiv:0909.2880]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Sarbach, O., Zannias, T.: Relativistic kinetic theory: an introduction. In: AIP Conference Proceedings, Vol. 1548, pp. 134–155, American Institute of Physics (2013). https://doi.org/10.1063/1.4817035[arxiv:1303.2899]

  25. Sarbach, O., Zannias, T.: The geometry of the tangent bundle and the relativistic kinetic theory of gases. Class. Quant. Grav. 31(8), 085013 (2014). https://doi.org/10.1088/0264-9381/31/8/085013. [arxiv:1309.2036]

    Article  MATH  ADS  Google Scholar 

  26. Sarbach, O., Zannias, T.: Tangent bundle formulation of a charged gas. In: AIP Conference Proceedings, Vol. 1577, pp. 192–207, American Institute of Physics (2014). https://doi.org/10.1063/1.4861955[arxiv:1311.3532]

  27. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10(3), 338–354 (1958). https://doi.org/10.2748/tmj/1178244668

    Article  MathSciNet  MATH  Google Scholar 

  28. Dombrowski, P.: On the geometry of the tangent bundle. Reine Angew. Math. 1962(210), 73–88 (1962). https://doi.org/10.1515/crll.1962.210.73J

    Article  MathSciNet  MATH  Google Scholar 

  29. Gudmundsson, S., Kappos, E.: On the geometry of tangent bundles. Expos. Math. 20(1), 1–41 (2002). https://doi.org/10.1515/crll.1962.210.73

    Article  MathSciNet  MATH  Google Scholar 

  30. Risken, H.: Fokker-Planck equation. Springer, New York (1996). https://doi.org/10.1007/978-3-642-61544-3_4 ISBN:9783642615443

  31. Jacobs, K.: Stochastic processes for physicists: understanding noisy systems, Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511815980ISBN:9780511815980

  32. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, vol. 103. Springer, New York (2014). https://doi.org/10.1007/978-3-319-00227-9 . (ISBN:9783319002262)

    Book  MATH  Google Scholar 

  33. Nicolaescu, L.I.: The coarea formula. https://www3.nd.edu/~lnicolae/Coarea.pdf. Seminar Notes. Citeseer (2011)

  34. Negro, L.: Sample distribution theory using coarea formula. Commun. Stat. Theory Methods (2022). https://doi.org/10.1080/03610926.2022.2116284[arxiv:2110.01441]

  35. Liu, S., Zhao, L.: Work and work-energy theorem in curved spacetime. arXiv preprint (2020) . [arxiv:2010.13071]

  36. Hao, X., Liu, S., Zhao, L.: Relativistic transformation of thermodynamic parameters and refined Saha equation. Commun. Theor. Phys. (2022). https://doi.org/10.1088/1572-9494/acae81[arxiv:2105.07313]

  37. Liu, S., Hao, X., Liu, S.F., Zhao, L.: Covariant transport equation and gravito-conductivity in generic stationary spacetimes. Eur. Phys. J. C 82(12), 1–11 (2022). https://doi.org/10.1140/epjc/s10052-022-11093-3. [arxiv:2210.10907]

    Article  ADS  Google Scholar 

  38. Hao, X., Liu, S., Zhao, L.: Gravito-thermal transports, Onsager reciprocal relation and gravitational Wiedemann-Franz law. arXiv preprint (2023). [arxiv:2306.04545]

  39. Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Applications, vol. 22. Springer, London (2002). https://doi.org/10.1007/978-3-0348-8165-4 . (ISBN: 9783034881654)

    Book  MATH  Google Scholar 

  40. Klimontovich, Y.L.: Nonlinear Brownian motion. Phys-Usp 37(8), 737 (1994). https://doi.org/10.1070/PU1994v037n08ABEH000038

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under the Grant No. 12275138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zhao.

Ethics declarations

Competing Interest

The authors declare no competing interest.

Additional information

Communicated by Jae Dong Noh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendex A: Diffusion Operator Approach to the FPE

Appendex A: Diffusion Operator Approach to the FPE

In order to derive the FPE from a stochastic differential equation (SDE), we need to use Ito’s lemma to calculate the differential of an arbitrary scalar function, and perform integration by parts twice. When the SDE is defined on a manifold, this procedure can be very complicated.

There is a simpler approach, i.e. the diffusion operator approach [32], for obtaining the FPE on a manifold. Here we give a brief review of this alternative method.

The Ito type SDE on Riemannian manifold or Pseudo-Riemannian manifold (Mg) can be written as

$$\begin{aligned} \textrm{d}{\tilde{X}}^\mu _t=F^\mu \textrm{d}t+ C^\mu {}_{\mathfrak {a}} \circ _I \textrm{d}\tilde{w}_t^{\mathfrak {a}}. \end{aligned}$$
(88)

Let h be an arbitrary scalar field on M, then the time differential of \({\tilde{h}}_t:=h({\tilde{X}}_t)\) can be derived by Ito’s lemma:

$$\begin{aligned} \textrm{d}{\tilde{h}}_t=\left[ \frac{\partial h}{\partial x^{\mu }} F^{\mu } +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2} \frac{\partial ^2 h}{\partial x^{\mu } \partial x^{\nu }} C^{\mu }{}_{\mathfrak {a}} C^{\nu }{}_{\mathfrak {b}} \right] \textrm{d}t + \frac{\partial h}{\partial x^\mu }C^{\mu }{}_{\mathfrak {a}}\circ _I \textrm{d}\tilde{w}_t^\mathfrak {a}. \end{aligned}$$
(89)

Therefore, the expectation of \(\textrm{d}{\tilde{h}}_t\) is

$$\begin{aligned} \langle \textrm{d}{\tilde{h}}_t\rangle =\left\langle \frac{\partial h}{\partial x^{\mu }} F^{\mu } +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2} \frac{\partial ^2 h}{\partial x^{\mu } \partial x^{\nu }} C^{\mu }{}_{\mathfrak {a}} C^{\nu }{}_{\mathfrak {b}} \right\rangle \textrm{d}t . \end{aligned}$$
(90)

This means \(\langle {\tilde{h}}_t\rangle \) is differentiable with respect to time in spite of the fact that \({\tilde{h}}_t\) isn’t differentiable. Defining the diffusion operator as

$$\begin{aligned} {\textbf{A}}=F^\mu \frac{\partial }{\partial x^\mu } +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}C^\mu {}_{\mathfrak {a}} C^\nu {}_{\mathfrak {b}}\frac{\partial ^2}{\partial x^\mu \partial x^\nu }, \end{aligned}$$
(91)

the derivative of \(\langle {\tilde{h}}_t\rangle \) can be written as

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\langle {\tilde{h}}_t\rangle =\langle {\textbf{A}} \tilde{h}_t \rangle . \end{aligned}$$
(92)

Let \(\Phi _t(x):=\Pr [{\tilde{X}}_t=x]\) be a PDF associated with the invariant volume element \(\sqrt{g}\textrm{d}^n x\) of M, above equation actually means

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\int _M h \Phi _t \sqrt{g} \textrm{d}^n x =\int _M h \partial _t \Phi _t \sqrt{g} \textrm{d}^n x =\int _M \Phi _t {\textbf{A}} h \sqrt{g} \textrm{d}^n x =\int _M ({\textbf{A}}^* \Phi _t) h \sqrt{g} \textrm{d}^n x, \end{aligned}$$
(93)

where \({\textbf{A}}^*\) is the adjoint of \({\textbf{A}}\). Since h is arbitrary, the above equation implies

$$\begin{aligned} \partial _t \Phi _t={\textbf{A}}^* \Phi _t, \end{aligned}$$
(94)

which is the FPE associated with the SDE (88).

There are four rules for computing the adjoint operator:

  1. 1.

    \(({\textbf{A}}+{\textbf{B}})^*={\textbf{A}}^*+{\textbf{B}}^*\).

  2. 2.

    \((\textbf{AB})^*={\textbf{B}}^*{\textbf{A}}^*\).

  3. 3.

    \(\displaystyle \left( \frac{\partial }{\partial x^\mu }\right) ^* =-\frac{1}{\sqrt{g}}\frac{\partial }{\partial x^\mu }\sqrt{g}\), where the right hand side needs to be understood as a right associative operator.

  4. 4.

    \((F^\mu )^*=F^\mu \).

Using these rules, the adjoint of the diffusion operator (91) is evaluated to be

$$\begin{aligned} {\textbf{A}}^*&=-\frac{1}{\sqrt{g}}\frac{\partial }{\partial x^\mu }\sqrt{g} F^\mu +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}\frac{1}{\sqrt{g}}\frac{\partial ^2}{\partial x^\mu \partial x^\nu } \sqrt{g} C^\mu {}_{\mathfrak {a}} C^\nu {}_{\mathfrak {b}}. \end{aligned}$$
(95)

Since the Stratonovich type SDE

$$\begin{aligned} \textrm{d}{\tilde{X}}^\mu =F^\mu \textrm{d}t+ C^\mu {}_{\mathfrak {a}} \circ _S \textrm{d}{\tilde{w}}^{\mathfrak {a}} \end{aligned}$$
(96)

is equivalent to the Ito type SDE

$$\begin{aligned} \textrm{d}{\tilde{X}}^{\mu }=\left( F^{\mu }+\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}C^{\nu }{}_{\mathfrak {a}} \frac{\partial }{\partial x^{\nu }} C^{\mu }{}_{\mathfrak {b}}\right) \textrm{d}t + C^{\mu }{}_{\mathfrak {a}} \circ _I \textrm{d}{\tilde{w}}^{\mathfrak {a}}, \end{aligned}$$
(97)

the corresponding diffusion operation reads

$$\begin{aligned} {\textbf{A}}&=\left( F^\mu +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}C^\nu {}_{\mathfrak {a}} \frac{\partial }{\partial x^\nu } C^\mu {}_{\mathfrak {b}}\right) \frac{\partial }{\partial x^\mu } +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}C^\nu {}_{\mathfrak {a}} C^\mu {}_{\mathfrak {b}} \frac{\partial ^2}{\partial x^\mu \partial x^\nu }\nonumber \\&=F^\mu \frac{\partial }{\partial x^\mu } +\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}C^\nu {}_{\mathfrak {a}}\frac{\partial }{\partial x^\nu } C^\mu {}_{\mathfrak {b}} \frac{\partial }{\partial x^\mu }. \end{aligned}$$
(98)

Introducing the vector fields

$$\begin{aligned} L_0=F^\mu \frac{\partial }{\partial x^\mu }\qquad L_{\mathfrak {a}} =C^\mu {}_{\mathfrak {a}}\frac{\partial }{\partial x^\mu }, \end{aligned}$$
(99)

the diffusion operation can be written as simpler form

$$\begin{aligned} {\textbf{A}}=\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}L_{\mathfrak {a}} L_{\mathfrak {b}} +L_0. \end{aligned}$$
(100)

It is easy to see that \(L_0\) provides the drift term of FPE and \(L_{\mathfrak {a}}\) provides the diffusion term. Notice that the adjoint of the coordinate derivative operator looks like the covariant divergence operator when acting on a vector field. Therefore, the action of the adjoint of \({\textbf{A}}\) on the PDF becomes

$$\begin{aligned} {\textbf{A}}^*\Phi _t&=\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}L^*_{\mathfrak {a}} L^*_{\mathfrak {b}}\Phi _t +L^*_0\Phi _t\nonumber \\&=\frac{\delta ^{\mathfrak {a}\mathfrak {b}}}{2}\nabla _\mu ( C^\mu {}_{\mathfrak {a}}(\nabla _\nu C^\nu {}_{\mathfrak {b}}\Phi _t)) -\nabla _\mu (F^\mu \Phi _t). \end{aligned}$$
(101)

Inserting this result into eq.(94) gives rise to the Fokker-Planck equation associated with the Stratonovich type SDE (96).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, T. & Zhao, L. Relativistic Stochastic Mechanics II: Reduced Fokker-Planck Equation in Curved Spacetime. J Stat Phys 190, 181 (2023). https://doi.org/10.1007/s10955-023-03205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03205-4

Keywords

Navigation