Skip to main content
Log in

Status of the Fundamental Laws of Thermodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe recent progress towards deriving the Fundamental Laws of thermodynamics (the 0th, 1st, and 2nd Law) from nonequilibrium quantum statistical mechanics in simple, yet physically relevant models. Along the way, we clarify some basic thermodynamic notions and discuss various reversible and irreversible thermodynamic processes from the point of view of quantum statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Abou-Salem, Nonequilibrium quantum statistical mechanics and thermodynamics, ETH-Diss. 16187 (2005).

  2. W. Abou-Salem and J. Fröhlich, Adiabatic theorems and reversible isothermal processes, Lett. Math. Phys. 72:153–163 (2005).

    Google Scholar 

  3. W. Abou-Salem and J. Fröhlich, Cyclic thermodynamic processes and entropy production, to appear in J. Stat. Phys.

  4. W. Abou-Salem and J. Fröhlich, Adiabatic theorems for quantum resonances, to appear in Commun. Math. Phys.

  5. W. Abou-Salem and J. Frölhlich, in preparation.

  6. H. Araki and E. Woods, Representations of the canonical commutation relations describing a non-relativistic infinite free bose gas. J. Math. Phys. 4:637–662 (1963).

    Article  MathSciNet  Google Scholar 

  7. H. Araki and W. Wyss, Representations of canonical anticommutation relations, Helv. Phys. Acta 37:136 (1964).

    Google Scholar 

  8. J. E. Avron and A. Elgart, Adiabatic theorem without a gap condition, Commun. Math. Phys. 203:445–463 (1999).

    Google Scholar 

  9. V. Bach, J. Fröhlich and I. M. Sigal, Return to Equilibrium. J. Math. Phys. 41(6):3985–4061 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. F. Benetto, J. L. Lebowitz and L. Rey-Bellet, Fourier’s Law: A Challenge to Theorists, Math. Phys. 2000:128–150, Imperial College Press, London (2000).

  11. D. D. Botvich, and V. A. Malyshev, Unitary equivalence of temperature dy for ideal and locally perturbed Fermi gas, Commun. Math. Phys. 61:209 (1978).

    Google Scholar 

  12. J. B. Boyling, An axiomatic approach to classical thermodynamics, Proc. R. Soc. London A 329:35–70 (1972).

  13. O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics 1,2, Texts and Monographs in Physics (Springer-Verlag Berlin, 1987).

  14. J. Dereziński and V. Jaksić, Spectral theory of Pauli-Fierz operators, Ann. Henri Poincare 4:739 (2003).

    Google Scholar 

  15. J. Dereziński and V. Jaksić, C.-A. Pillet, Perturbation theory of KMS states, Rev. Math. Phys. 15:447 (2003).

    Google Scholar 

  16. J. Fröhlich and M. Merkli, Another return of “return to equilibrium,” Commun. Math. Phys. 251:235–262 (2004).

    Google Scholar 

  17. J. Fröhlich and M. Merkli, Thermal lonization. Math. Phys. Anal. Geometry 7:239–287 (2004).

    Article  MATH  Google Scholar 

  18. J. Fröhlich, M. Merkli and I. M. Sigal, Ionization of atoms in a thermal field, J. Stat. Phys. 116:311–359 (2004).

    Article  Google Scholar 

  19. J. Fröhlich, M. Merkli and D. Ueltschi, Dissipative transport: thermal contacts and tunnelling junctions, Ann. Henri Poincare 4:897–945 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Fröhlich, M. Merkli, S. Schwarz and D. Ueltschi, Statistical Mechanics of Thermodynamic Processes, in A Garden of Quanta (World Sci. Publishing, River Edge, New Jersey, 2003), pp. 345–363.

  21. R. Haag, Local Quantum Physics. Fields, Particles, Algebras. Text and Monographs in Physics (Springer-Verlag Berlin, 1992).

  22. R. Haag, N. M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics., Commun. Math. Phys. 5:215–236 (1967).

    Google Scholar 

  23. R. Haag, D. Kastler and E. Trych-Pohlmeyer, Stability and equilibrium states, Commun. Math. Phys. 38:213 (1974).

    Google Scholar 

  24. K. Hepp, Rigorous results on the s–d model of the Kondo effect. Solid State Commun. 8:2087–2090 (1970).

    Article  Google Scholar 

  25. V. Jaksić and C. A. Pillet, On a model for quantum friction II. Fermi’s golden rule and dynamics at positive temperature, Commun. Math. Phys. 176:619–644 (1996).

    Article  ADS  Google Scholar 

  26. V. Jaksić and C. A. Pillet, On a model for quantum friction III. ergodic properties of the Spin-Boson system, Commun. Math. Phys. 178:627–651 (1996).

    Article  ADS  Google Scholar 

  27. V. Jaksić and C.-A. Pillet, Non- equilibrium steady states of finite quantum systems coupled to thermal reservoirs, Commun. Math. Phys. 226:131–162 (2002).

    Article  ADS  Google Scholar 

  28. V. Jaksic, Y. Ogata and C.-A. Pillet, The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics, [Texas mp-arc 2005 preprint].

  29. V. Jaksic, Y. Ogata and C.-A. Pillet, Linear response theory in quantum statistical mechanics, [Texas mp-arc 2005 preprint].

  30. E. Lieb and M.-B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14: 1938–1941 (1973).

    Article  MathSciNet  Google Scholar 

  31. E. Lieb and J. Yngvason, The mathematical structure of the second law of thermodynamics, in Current Developments in Mathematics, 2001 (International Press, Cambridge, 2002).

  32. M. Merkli, Positive commutator method in non-equilibrium statistical mechanics, Commun. Math. Phys. 223:327–362 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. M. Merkli, Stability of equilibria with a condensate, Commun. Math. Phys. 257:621–640 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. M. Merkli, M. Mück and I. M. Sigal, Instability of equilibrium states for coupled heat reservoirs at different temperatures [axiv:math-ph/0508005].

  35. M. Merkli, M. Mück and I. M. Sigal, Theory of nonequilibrium stationary states as a theory of resonances. Existence and properties of NESS, [arxiv:math-ph/0603006].

  36. D. Robinson, Return to equilibrium, Commun. Math. Phys. 31:171–189 (1973).

    Article  MATH  ADS  Google Scholar 

  37. D. Ruelle, Statistical Mechanics. Rigorous Results, Reprint of the 1989 Edition (World Scientific Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999).

  38. D. Ruelle, Entropy production in quantum spin systems, Comm. Math. Phys. 224(1):3–16 (2001).

    Google Scholar 

  39. D. Ruelle Natural nonequilibrium states in quantum statistical mechanics, J. Stat. Phys. 98(1–2):57–75 (2000).

  40. S. Sakai, C -Algebras and W -Algebras (Berlin, Springer, 1971).

  41. S. Teufel, A note on the adiabatic theorem, Lett. Math. Phys. 58:261–266 (2001).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fröhlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, W.K.A., Fröhlich, J. Status of the Fundamental Laws of Thermodynamics. J Stat Phys 126, 1045–1068 (2007). https://doi.org/10.1007/s10955-006-9222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9222-8

Keywords

Navigation