Skip to main content
Log in

Grad’s 13 Moment Equations in a Modified Form

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe a hierarchy of formal expansions that represent the Fourier transform of a solution of the Boltzmann equation. The constructed approximations are based on the family of weighted Taylor expansions. The first two representations correspond to the Maxwellian and to the Gaussian expansions. The third representation has a weight that generalizes the Gaussian and it depends on the first 13 moments of the Boltzmann density f. It can be shown that this weight is Galilean invariant and it is close to the Gaussian, providing that the heat fluxes are not too large. The 13 moment weight yields a revised form of Grad’s 13 moment expansion for the Boltzmann equation. In search for the entropy dissipation inequality, we also examine the relation between Levermore’s 14 moment density and Grad’s 13 moment expansion. First, we show that the coefficients of the Godunov potential are described by a system of partial differential equations, with coefficients that depend on the Fourier transform of the Levermore’s density f Λ itself. Then, we argue that the same Taylor expansion exploited in the Grad’s scheme, can be used to approximate Levermore’s 14 moment density. We also show that the weighted Taylor expansions are related to a formal solution of the Hamburger problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy dissipation and long range interactions, Arch. Rational Mech. Anal. 152:327–355 (2000).

    Article  MATH  ADS  Google Scholar 

  2. A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math. Phys. 7:111–233 (1988).

    Google Scholar 

  3. A. V. Bobylev, The Chapman-Ensgok and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27:29–31 (1982).

    ADS  Google Scholar 

  4. C. Cercignani, The Boltzmann Equation and its Applications, Springer-Verlag, New York (1988).

    MATH  Google Scholar 

  5. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge Math. Library (1970).

  6. W. Dreyer, Maximization of the entropy in non-equlibrium, J.Phys. A: Math. Gen. 20:6505–6517 (1987).

    Article  ADS  Google Scholar 

  7. W. Dreyer, M. Junk, and M. Kunik, On the approximation of the Fokker-Planck equation by moment systems. Nonlinearity 14:881–906 (2001).

    Article  MATH  ADS  Google Scholar 

  8. S. K. Godunov, An interesting class of quasilinear systems. Sov. Phys. Math. 2:947–949 (1961).

    MATH  Google Scholar 

  9. S. Goldstein and J. Lebowitz, On the Boltzman entropy of nonequlibrium systems. Physica D193:53–66 (2004).

    ADS  Google Scholar 

  10. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure. Apply. Math. 2:331–407 (1949).

    Article  MATH  Google Scholar 

  11. H. Grad, Principles of the kinetic theory of gases. In: S. Flügge, ed., Handbuch der Physik, Band XII, Springer-Verlag, Berlin 1958, pp. 205–294.

  12. A. Greven, G. Keller, and G. Warnecke (eds.), Entropy, Princeton University Press, Princeton, Oxford (2003).

  13. M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York (1969).

    Google Scholar 

  14. M. Junk, Domain of definition of Levermore’s five moment system. J. Stat. Phys. 93:1143–1167 (1988).

    Article  Google Scholar 

  15. M. Junk and A. Unterreiter, Maximum entropy moment systems and Galilean invariance. Continuum Mech. Thermodyn. 14:563–576 (2002).

    Article  MATH  ADS  Google Scholar 

  16. D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(1–2):1021–1065 (1996).

    Article  MATH  Google Scholar 

  17. D. Levermore and W. Morokoff, The Gaussian moment closure for gas dynamics. SIAM J. Apply. Math. 59(1):72–96 (1998).

    Article  Google Scholar 

  18. E. Lukacs, Characteristic Functions, Griffin & Company Limited, London (1960).

    MATH  Google Scholar 

  19. I. Müller and T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. Springer-Verlag, New York (1998).

    MATH  Google Scholar 

  20. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics. Continuum Mechanics and Thermodynamics 1(1):3–27 (1989).

    Article  MATH  Google Scholar 

  21. B. Simon, The classical moment problem as self-adjont finite difference operator. Adv. Math. 137:82–203 (1998).

    Article  MATH  Google Scholar 

  22. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Priceton University Press, Princeton, New Jersey (1993).

    MATH  Google Scholar 

  23. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World Scientific Pubisher Co. Pfe. Ltd., Singapore (2003).

    MATH  Google Scholar 

  24. C. Villani, A reviev of mathematical topics in collisional kinetic theory. In Hanbook of Mathematical Fluid Dynamics. S. Friedlender, D. Serre, Eds. Elsevier, vol 1, Chapter 2, 2002, pp. 71–305. (the web version updated in September 2005).

  25. L. Zalcman, Mean-values and Differential Equations. Israel J. Math. 14:339–352 (1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Karwowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karwowski, A. Grad’s 13 Moment Equations in a Modified Form. J Stat Phys 128, 667–698 (2007). https://doi.org/10.1007/s10955-006-9216-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9216-6

Keywords

Navigation