Skip to main content
Log in

Changes in the Effective Parameters of Averaged Motion in Nonlinear Systems Subject to Noise

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss how the effective parameters characterising averaged motion in nonlinear systems are affected by noise (random fluctuations). In this approach to stochastic dynamics, the stochastic system is replaced by its deterministic equivalent but with noise-dependent parameters. We show that it can help to resolve certain paradoxes and that it has a utility extending far beyond its usual application in passing from the microscopic equations of motion to the macroscopic ones. As illustrative examples, we consider the diode-capacitor circuit, a Brownian ratchet, and a generic stochastic resonance system. In the latter two cases we calculate for the first time their effective parameters of averaged motion as functions of noise intensity. We speculate that many other stochastic problems can be treated in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Y. L. Klimontovich, Statistical Physics (Harwood, New York, 1986).

    Google Scholar 

  • L. Boltzmann, Lectures on Gas Theory (CUP, Cambridge, 1964).

    Google Scholar 

  • D. G. Luchinsky and P. V. E. McClintock, Irreversibility of classical fluctuations studied in analogue electrical circuits. Nature 389:463–466 (1997).

    Article  ADS  Google Scholar 

  • D. G. Luchinsky, P. V. E. McClintock and M. I. Dykman, Analogue studies of nonlinear systems, Rep. Prog. Phys. 61:889–997 (1998).

    Google Scholar 

  • P. S. Landa and P. V. E. McClintock, Development of turbulence in subsonic submerged jets. Phys. Rep. 397:1–62 (2004).

    Article  ADS  Google Scholar 

  • L. Prandtl, Bericht über untersuchungen zur ausgebildeten turbulenz. Zs. Angew. Math. Mech. 5:136–139 (1925).

    MATH  Google Scholar 

  • L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth and Heinemann, Oxford, 1987).

    MATH  Google Scholar 

  • L. Prandtl, Führer durch die Strömungslehre 3rd edn. (Vieweg, Braunschweig, 1949).

  • A. Ginevsky and A. Kolesnikov, The theory of ideal raft. Soviet Phys. Doklady 251:312–315 (1980).

    Google Scholar 

  • L. Brillouin, Can the rectifier become a thermodynamical demon? Phys. Rev. 78:627–628 (1950).

    Google Scholar 

  • D. K. C. MacDonald, Brownian movement. Phys. Rev. 108:541–545 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • C. T. J. Alkemade, On the problem of Brownian motion of non-linear systems. Physica 24:1029–1034 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • N. G. Van Kampen, Thermal fluctuations in a nonlinear system. Phys. Rev. 110:319–323 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • A. Marek, A note to recent theories of Brownian motion in non-linear systems. Physica 25:1358–1367 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  • R. L. Stratonovich, On the paradox in the theory of thermal fluctuations of nonlinear resistors (in Russian). Vestnik MGU No. 4, pp. 99–102 (1960).

  • R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Palo Alto, 1963).

    Google Scholar 

  • M. I. Dykman, R. Mannella, P. V. E. McClintock and N. G. Stocks, Stochastic resonance in bistable systems: Comment. Phys. Rev. Lett. 65:2606 (1990).

    Google Scholar 

  • L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70:223–287 (1998).

    Article  ADS  Google Scholar 

  • V. S. Anishchenko, A. B. Neiman, F. Moss and L. Schimansky-Geier, Stochastic resonance: Noise enhanced order (in Russian). Soviet Phys. – Uspekhi Fiz. Nauk. 39:7–38 (1999).

    ADS  Google Scholar 

  • P. S. Landa, Regular and Chaotic Oscillations (Springer-Verlag, Berlin, 2001).

    MATH  Google Scholar 

  • P. S. Landa, Mechanism of stochastic resonance. Doklady Physics 49:706–709 (2004).

    Article  ADS  Google Scholar 

  • I. I. Blekhman, Vibrational Mechanics (World Scientific, Singapore, 2000).

    Google Scholar 

  • A. A. Pervozvansky, Random Processes in Nonlinear Control Systems (in Russian) (Fizmatgiz, Moscow, 1962).

    Google Scholar 

  • E. P. Popov, Applied Theory of Control Processes in Nonlinear Systems (in Russian) (Nauka, Moscow, 1973).

    Google Scholar 

  • N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (Princeton University Press, Princeton, 1947).

    Google Scholar 

  • N. N. Bogolyubov and Y. A. Mitropol’sky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961).

    Google Scholar 

  • R. L. Stratonovich, Nonlinear Nonequilibrium Thermodynamics (Springer-Verlag, Berlin, 1992).

    MATH  Google Scholar 

  • C. S. Peskin, G. M. Odell and G. F. Oster, Cellular motions and thermal fluctuations – the Brownian ratchet. Biophys. J. 65:316–324 (1993).

    Article  ADS  Google Scholar 

  • K. Svoboda, C. F. Schmidt, B. J. Schnapp and S. M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727 (1993).

    Article  ADS  Google Scholar 

  • M. O. Magnasco, Forced thermal ratchets. Phys. Rev. Lett. 71:1477–1481 (1993).

    Article  ADS  Google Scholar 

  • R. D. Astumian and M. Bier, Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 72:1766–1769 (1994).

    Article  ADS  Google Scholar 

  • C. R. Doering, Randomly rattled ratchets. Nuovo Cimento D 17:685–697 (1995).

    Article  ADS  Google Scholar 

  • P. Hänggi and R. Bartussek, in: J. Parisi, S. C. Müller and W. Zimmermann, eds., Nonlinear Physics and Complex Systems – Current Status and Future Trends: Lect. Notes in Physics, vol. 476 (Springer-Verlag, Berlin, 1996), pp. 294–308.

  • P. S. Landa, Noise-induced transport of Brownian particles with consideration for their mass. Phys. Rev. E 58:1325–1333 (1998).

    Article  ADS  Google Scholar 

  • D. G. Luchinsky, M. J. Greenall and P. V. E. McClintock, Resonant rectification of fluctuations in a Brownian ratchet. Phys. Lett. A 273:316–321 (2000).

    Article  MATH  ADS  Google Scholar 

  • M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein and N. G. Stocks, Stochastic resonance: Linear response and giant nonlinearity. J. Stat. Phys. 70:463–478 (1993).

    Article  ADS  Google Scholar 

  • M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein and N. G. Stocks, Nonconventional stochastic resonance. J. Stat. Phys. 70:479–499 (1993).

    Article  ADS  Google Scholar 

  • M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein and N. G. Stocks, Stochastic resonance in perspective. Nuovo Cimento D 17:661–683 (1995).

    Article  ADS  Google Scholar 

  • R. L. Stratonovich, Topics in the Theory of Random Noise, vols. 1 & 2 (Gordon and Breach, New York, 1963, 1967).

  • I. I. Blekhman and P. S. Landa, Conjugate resonances in nonlinear systems under dual-frequency forcing. vibroinduced bifurcations (in Russian), Izv. vuzov., Prikl. Nelin. Dinamika 10:44 (2002).

  • I. I. Blekhman and P. S. Landa, Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. Int. J. Non-linear Mechan. 39:421–426 (2004).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. E. McClintock.

Additional information

PACS: 05.10.Gg, 05.40.-a, 05.40.Jc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landa, P.S., Neimark, Y.I. & McClintock, P.V.E. Changes in the Effective Parameters of Averaged Motion in Nonlinear Systems Subject to Noise. J Stat Phys 125, 593–620 (2006). https://doi.org/10.1007/s10955-006-9209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9209-5

Keywords

Navigation