Skip to main content
Log in

On a “deterministic” explanation of the stochastic resonance phenomenon

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper concerns the analysis of the stochastic resonance phenomenon that previously has been thoroughly studied and found numerous applications in physics, neuroscience, biology, medicine, mechanics, etc. A novel “deterministic” explanation of this phenomenon is proposed that allows broadening the range of dynamical systems for which the phenomenon can be predicted and analysed. Our results indicate that stochastic resonance, similarly to vibrational resonance, arises due to deterministic reasons: it occurs when a system is excited with two (or more) vastly different frequencies, one of which is much higher than another. The effective properties of the system, e.g. stiffness or mass, change under the action of the high-frequency excitation; and the low-frequency excitation acts on this “modified” system leading to low-frequency resonances. In the case of a broadband random excitation, the high-frequency part of the excitation spectrum affects the effective properties of the system. The low-frequency part of the spectrum acts on this modified system. Thus by varying the noise intensity one can change properties of the system and attain resonances. This explanation allows using “deterministic” approach, i.e. replacing noise by high-frequency excitation, when studying the stochastic resonance phenomenon. Employing this approach, we demonstrate that linear and nonlinear stochastic systems with varying parameters, i.e. parametrically excited systems, can exhibit the phenomenon and determine the corresponding resonance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 33–36 (1995)

    Article  Google Scholar 

  2. Bulsara, A., Gammaitoni, L.: Tuning in to noise. Phys. Today 49(3), 39–45 (1996)

    Article  Google Scholar 

  3. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998)

    Article  Google Scholar 

  4. Chapeau-Blondeau, F., Rousseau, D.: Noise improvements in stochastic resonance: from signal amplification to optimal detection. Fluct. Noise Lett. 2, 221–233 (2002)

    Article  Google Scholar 

  5. Comte, J., et al.: Stochastic resonance: another way to retrieve subthreshold digital data. Phys. Lett. A 309(1), 39–43 (2003)

    Article  MathSciNet  Google Scholar 

  6. Moss, F., Ward, L., Sannita, W.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115(2), 267–281 (2004)

    Article  Google Scholar 

  7. Priplata, A., Patritti, B., Niemi, J., et al.: Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann. Neurol. 59(1), 4–12 (2006)

    Article  Google Scholar 

  8. McDonnell, M., Abbot, D.: What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. Comput. Biol. 5(5), e1000348 (2009)

    MathSciNet  Google Scholar 

  9. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69(1), 1–3 (2009)

    Article  Google Scholar 

  10. Chapeau-Blondeau, F., Rousseau, D.: Raising the noise to improve performance in optimal processing. J. Stat. Mech. Theory Exp. (2009). https://doi.org/10.1088/1742-5468/2009/01/P01003

    Google Scholar 

  11. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14(11), L 453 (1981)

    Article  MathSciNet  Google Scholar 

  12. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34(1), 10–15 (1982)

    Article  MATH  Google Scholar 

  13. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: A theory of stochastic resonance in climatic change. SIAM J. Appl. Math. 43(3), 565–578 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70(1), 309–327 (1993)

    Article  MATH  Google Scholar 

  15. Jung, P.: Threshold devices: fractal noise and neural talk. Phys. Rev. E 50, 2513–2522 (1994)

    Article  Google Scholar 

  16. Wiesenfeld, K., Pierson, D., Pantazelou, E., Dames, C., Moss, F.: Stochastic resonance on a circle. Phys. Rev. Lett. 72(14), 2125–2129 (1994)

    Article  Google Scholar 

  17. Gingl, Z., Kiss, L., Moss, F.: Non-dynamical stochastic resonance: theory and experiments with white and arbitrarily coloured noise. Europhys. Lett. 29(3), 191–196 (1995)

    Article  Google Scholar 

  18. Gammaitoni, L.: Stochastic resonance and the dithering effect in threshold physical systems. Phys. Rev. E 52, 4691–4698 (1995)

    Article  Google Scholar 

  19. McNamara, B., Wiesenfeld, K.: Theory of stochastic resonance. Phys. Rev. A 39(9), 4854–4869 (1989)

    Article  Google Scholar 

  20. Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62(2), 251–341 (1990)

    Article  MathSciNet  Google Scholar 

  21. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  Google Scholar 

  22. Stephenson, A.: On induced stability. Philos. Mag. 6(15), 233–236 (1908)

    Article  MATH  Google Scholar 

  23. Kapitza, P.L.: Pendulum with a vibrating suspension. Usp. Fiz. Nauk 44, 7–15 (1951)

    Article  Google Scholar 

  24. Bleich, H.: Effect of vibrations on the motion of small gas bubbles in a liquid. J. Am. Rocket Soc. 26, 11, 978, 958–964 (1956)

    Google Scholar 

  25. Sorokin, V.S., Blekhman, I.I., Vasilkov, V.B.: Motion of a gas bubble in fluid under vibration. Nonlinear Dyn. 67(1), 147–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Blekhman, I.I.: Vibrational Mechanics. Nonlinear Dynamic Effects, General Approach, Applications, p. 509. World Scientific, Singapore (2000)

    Book  Google Scholar 

  27. Blekhman, I.I. (ed.): Selected Topics in Vibrational Mechanics, p. 409. World Scientific, Hackensack (2002)

    MATH  Google Scholar 

  28. Thomsen, J.: Vibrations and Stability: Advanced Theory, Analysis and Tools, p. 404. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  29. Blekhman, I.I.: Theory of Vibrational Processes and Devices: Vibrational Mechanics and Vibrational Rheology, p. 640. Ruda I Metalli, St. Petersburg (2013). (in Russian)

    Google Scholar 

  30. Landa, P.S., McClintock, P.: Vibrational resonance. J. Phys. A Math. Gen. 33, L433–L438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Landa, P.S.: Regular and Chaotic Oscillations, p. 397. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  32. Baltanas, J., et al.: Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Phys. Rev. E 67, 066119 (2003)

    Article  MathSciNet  Google Scholar 

  33. Blekhman, I.I., Landa, P.S.: Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. Int. J. Non Linear Mech. 39, 421–426 (2004)

    Article  MATH  Google Scholar 

  34. Gandhimathi, V.M., et al.: Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators. Phys. Lett. A 360, 279–286 (2006)

    Article  MATH  Google Scholar 

  35. Yang, J.H., Zhu, H.: Vibrational resonance in Duffing systems with fractional-order damping. Chaos 22, 013112 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rajasekar, S., Sanjuan, M.: Nonlinear Resonances, p. 409. Springer, Heidelberg (2016)

    Book  Google Scholar 

  37. Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60(2), 1494–1499 (1999)

    Article  Google Scholar 

  38. Gitterman, M.: Harmonic oscillator with multiplicative noise: nonmonotonic dependence on the strength and the rate of dichotomous noise. Phys. Rev. E 67, 057103 (2003)

    Article  Google Scholar 

  39. Gitterman, M.: Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101 (2004)

    Article  MathSciNet  Google Scholar 

  40. Guo, F., Li, H., Liu, J.: Stochastic resonance in a linear system with random damping parameter driven by trichotomous noise. Physica A 409, 1–7 (2014)

    Article  MathSciNet  Google Scholar 

  41. Seshia, A., et al.: A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)

    Article  Google Scholar 

  42. Krylov, S., Harari, I., Cohen, Y.: Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15(6), 1188–1204 (2005)

    Article  Google Scholar 

  43. Rhoads, J., Shaw, S., Turner, K.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001 (2010)

    Article  Google Scholar 

  44. Zaitsev, S., et al.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Floris, C.: Stochastic stability of damped Mathieu oscillator parametrically excited by a Gaussian noise. Math. Probl. Eng. 2012, 375913 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nayfeh, A., Mook, D.: Nonlinear Oscillations, p. 720. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  47. Bogoliubov, N., Mitropolskii, J.: Asymptotic Methods in the Theory of Non-linear Oscillations, p. 537. Gordon and Breach, New York (1961)

    Google Scholar 

  48. Sanders, J., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems, p. 249. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  49. Blekhman, I.I.: Oscillatory strobodynamics—a new area in nonlinear oscillations theory, nonlinear dynamics and cybernetical physics. Cybern. Phys. 1, 5–10 (2012)

    Google Scholar 

  50. Blekhman, I.I., Sorokin, V.S.: Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples. Nonlinear Dyn. 83, 2125–2141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Guo, F.: Multiplicative noise-induced vibrational resonance in a monostable system with one high-frequency and two low-frequency forces. Phys. Scr. 83, 025008 (2011)

    Article  MATH  Google Scholar 

  52. Blekhman, I.I., Sorokin, V.S.: On the separation of fast and slow motions in mechanical systems with high-frequency modulation of the dissipation coefficient. J. Sound Vib. 329(23), 4936–4949 (2010)

    Article  Google Scholar 

  53. Stocks, N.G., et al.: Stochastic resonance in monostable systems. J. Phys. A Math. Gen. 26, L385 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The work is carried out with financial support from the Russian Science Foundation, Grant 17-79-30056 (Project “REC Mekhanobr-Tekhnika”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sorokin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blekhman, I.I., Sorokin, V.S. On a “deterministic” explanation of the stochastic resonance phenomenon. Nonlinear Dyn 93, 767–778 (2018). https://doi.org/10.1007/s11071-018-4225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4225-y

Keywords

Navigation