Skip to main content
Log in

Scaling and Expansion of Moment Equations in Kinetic Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The set of generalized 13 moment equations for molecules interacting with power law potentials [Struchtrup, Multiscale Model. Simul. 3:211 (2004)] forms the base for an investigation of expansion methods in the Knudsen number and other scaling parameters. The scaling parameters appear in the equations by introducing dimensionless quantities for all variables and their gradients. Only some of the scaling coefficients can be chosen independently, while others depend on these chosen scales–their size can be deduced from a Chapman–Enskog expansion, or from the principle that a single term in an equation cannot be larger in size by one or several orders of magnitude than all other terms.

It is shown that for the least restrictive scaling the new order of magnitude expansion method [Struchtrup, Phys. Fluids 16(11):3921 (2004)] reproduces the original equations after only two expansion steps, while the classical Chapman–Enskog expansion would require an infinite number of steps. Both methods yield the Euler and Navier–Stokes–Fourier equations to zeroth and first order. More restrictive scaling choices, which assume slower time scales, small velocities, or small gradients of temperature, are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boltzmann, Weitere Studien über das Wä rmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften, Wien 66:275–370 (1872).

    Google Scholar 

  2. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows–Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics Series. (Springer, Heidelberg, 2005).

    MATH  Google Scholar 

  3. D. Enskog, Dissertation, Uppsala (1917).

  4. D. Enskog, The numerical calculation of phenomena in fairly dense gases. Arkiv Mat. Astr. Fys. 16(1): (1921).

  5. S. Chapman, On the law of distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-uniform Simple Monatomic Gas. Phil. Trans. R. Soc. A 216:279–348 (1916).

    Article  ADS  Google Scholar 

  6. S. Chapman, On the Kinetic Theory of a Gas. Part II: A Composite Monatomic Gas: Diffusion, Viscosity, and Thermal Conduction. Phil. Trans. R. Soc. A 217:115–197 (1918).

    Article  ADS  Google Scholar 

  7. D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40:382–435 (1936).

    Article  Google Scholar 

  8. M. Sh. Shavaliyev, Super-Burnett Corrections to the Stress Tensor and the Heat Flux in a Gas of Maxwellian Molecules. J. Appl. Maths. Mechs. 57(3):573–576 (1993).

    Article  Google Scholar 

  9. A. V. Bobylev, The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27:29–31 (1982).

    ADS  Google Scholar 

  10. P. Rosenau, Extending hydrodynamics via the regularization of the Chapman–Enskog solution. Phys. Rev. A 40:7193–7196 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103(5–6):1009–1033 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Jin, L. Pareschi and M. Slemrod, A Relaxation Scheme for Solving the Boltzmann Equation Based on the Chapman–Enskog Expansion. Acta Math. Appl. Sinica (English Series) 18:37–62 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. V. Bobylev, Instabilities in the Chapman–Enskog Expansion and Hyperbolic Burnett equations. J. Stat. Phys. published online 31:12 (2005).

    Google Scholar 

  14. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. (Cambridge University Press, 1970).

  15. J. H. Ferziger and H. G. Kaper, Mathematical theory of transport processes in gases. (North-Holland, Amsterdam, 1972).

    Google Scholar 

  16. M. N. Kogan, Rarefied Gas Dynamics. (Plenum Press, New York, 1969).

    Google Scholar 

  17. S. Harris, An Introduction to the Theory of the Boltzmann Equation. (Holt, Rinehart, and Winston, Inc., New York, 1971).

    Google Scholar 

  18. C. Cercignani, Theory and Application of the Boltzmann Equation. (Scottish Academic Press, Edinburgh, 1975).

    MATH  Google Scholar 

  19. S. Reinecke and G. M. Kremer, Method of Moments of Grad. Phys. Rev. A 42:815–820 (1990).

    Article  ADS  Google Scholar 

  20. S. Reinecke and G. M. Kremer, A generalization of the Chapman–Enskog and Grad methods. Continuum Mech. Thermodyn. 3:155–167 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. Reinecke and G. M. Kremer, Burnett's equations from a (13+9N)-field theory. Cont Mech. Thermodyn. 8:121–130 (1996).

    MATH  MathSciNet  Google Scholar 

  22. H. Grad, On the Kinetic Theory of Rarefied Gases. Comm. Pure Appl. Math. 2:325 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Grad, Principles of the Kinetic Theory of Gases. In S. Flügge, editor, Handbuch der Physik XII: Thermodynamik der Gase. (Springer, Berlin, 1958).

    Google Scholar 

  24. H. Struchtrup, Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11):3921–3934 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1):211–243 (2004).

    MathSciNet  Google Scholar 

  26. I. Müller, D. Reitebuch, and W. Weiss, Extended Thermodynamics–Consistent in Order of Magnitude. Cont. Mech. Thermodyn. 15:113–146 (2003).

    Article  MATH  Google Scholar 

  27. H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 Moment Equations: Derivation and Linear Analysis. Phys. Fluids 15(9):2668–2680 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Torrilhon and H. Struchtrup, Regularized 13-Moment-Equations: Shock Structure Calculations and Comparison to Burnett Models. J. Fluid Mech. 513:171–198 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. I. V. Karlin and A. N. Gorban, Hydrodynamics from Grad's equations: What can we learn from exact solutions? Ann. Phys.-Berlin 11(10–11):783–833 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. N. Gorban and I. V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics Vol. 660. (Springer, Berlin, 2005).

    Google Scholar 

  31. A. V. Bobylev, Quasi-stationary hydrodynamics for the Boltzmann equation. J. Stat. Phys. 80:1063–1083 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Y. Sone, Kinetic Theory and Fluid dynamics. (Birkh äuser, Boston, 2002).

    MATH  Google Scholar 

  33. H. C. Öttinger, Beyond Equilibrium Thermodynamics. (Wiley, Hoboken, 2005).

    Book  Google Scholar 

  34. M. N. Kogan, V. S. Galkin, and O. G. Fridlender, Stresses produced in gases by temperature and concentration inhomogeneities. New types of free convection. Sov. Phys. Usp. 19(5):420–428 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Struchtrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struchtrup, H. Scaling and Expansion of Moment Equations in Kinetic Theory. J Stat Phys 125, 569–591 (2006). https://doi.org/10.1007/s10955-006-9199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9199-3

Keywords

Navigation