Skip to main content
Log in

Some New Results for McKean’s Graphs with Applications to Kac’s Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The main goal of the present paper is to sharpen some results about the error made when the Wild sums, used to represent the solution of the Kac analog of Boltzmann’s equation, are truncated at the n-th stage. More precisely, in Carlen, Carvalho and Gabetta (J. Funct. Anal. 220: 362–387 (2005)), one finds a bound for the above-mentioned error which depends on (an Λ+ε). On the one hand, it is shown that Λ, the least negative eigenvalue of the linearized collision operator, is the best possible exponent. On the other hand, ε is an extra strictly positive number and a a positive coefficient which depends on ε too. Thus, it is interesting to check whether ε can be removed from the above bound. According to the aforesaid reference, this problem is studied here by means of the probability distribution of the depth of a leaf in a McKean random tree. In fact, an accurate study of the probability generating function of such a depth leads to conclude that the above bound can be replaced with (an Λ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. F. Bassetti, E. Gabetta and E. Regazzini, On the depth of the trees in the McKean representation of Wild's sums. To appear in Transport Theor. Stat. Phys. (2006).

  2. 2. P. Billingsley, Probability and Measure, Third edition (J. Wiley & S., New York, 1995).

    MATH  Google Scholar 

  3. 3. A. V. Bobylev, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas. Teoret. Mat. Fiz. 60: 280–310 (1984).

    MathSciNet  Google Scholar 

  4. 4. E. A. Carlen, M. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math. 53: 370–397 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. 5. E. A. Carlen, M. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. Anal. 220: 362–387 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. 6. E. A. Carlen and X. Lu, Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Statist. Phys. 112: 59–134 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. 7. C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975).

    MATH  Google Scholar 

  8. 8. C. A. Charalambides, Enumerative Combinatorics (Chapman & Hall/CRC, Boca Raton, 2002).

    MATH  Google Scholar 

  9. 9. L. Comtet, Analyse Combinatoire, Tome second (Presses universitaires de France, 1970).

  10. 10. P. Diaconis and L. Saloff-Coste, Bounds for Kac's Master Equation. Comm. Math. Phys. 209: 729–755 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. 11. W. Feller, An Introduction to Probability Theory and its Applications, Vol I, 3rd edition (Wiley, New York, 1968).

    MATH  Google Scholar 

  12. 12. M. Kac, Foundations of Kinetic Theory. Proc. 3rd Berkeley Sympos., J. Neyman ed., 3: 171–197 (1956).

    Google Scholar 

  13. 13. M. Kac, Probability and Related Topics in Physical Science (Wiley Interscience, New York, 1959).

    Google Scholar 

  14. 14. C. Knessl and W. Szpankowski, Asymptotic behavior of the height in a digital search tree and the longest phrase of the Lempel-Ziv scheme. SIAM J. Comput. 30: 923–964 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  15. 15. C. Knessl and W. Szpankowski, The height of a binary search tree: The limiting distribution perspective. Theoret. Comput. Sci. 289: 649–703 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. 16. W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966).

    MATH  Google Scholar 

  17. 17. H. P. McKean Jr., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal. 21: 343–367 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  18. 18. H. P. McKean Jr., An exponential formula for solving Boltzmann's equation for a Maxwellian gas. J. Combinatorial Theory 2: 358–382 (1967).

    MathSciNet  MATH  Google Scholar 

  19. 19. S. T. Rachev, Probability Metrics and the Stability of Stochastic Models (J. Wiley & S., Chichester, 1991).

    MATH  Google Scholar 

  20. 20. B. Reed, The height of a random binary search tree. J. ACM 50: 306–332 (2003).

    Article  MathSciNet  Google Scholar 

  21. 21. F. G. Tricomi and A. Erdályi, The asymptotic expansion of a ratio of Gamma functions. Pacific J. Math. 1: 133–142 (1951).

    MathSciNet  MATH  Google Scholar 

  22. 22. E. Wild, On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47: 602–609 (1951).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Gabetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabetta, E., Regazzini, E. Some New Results for McKean’s Graphs with Applications to Kac’s Equation. J Stat Phys 125, 943–970 (2006). https://doi.org/10.1007/s10955-006-9187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9187-7

Keywords

Navigation