Skip to main content
Log in

Jamming Percolation and Glassy Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a detailed physical analysis of the dynamical glass-jamming transition which occurs for the so called Knight models recently introduced and analyzed in a joint work with D.S. Fisher (Toninelli et al., Phys. Rev. Lett. 96, 035702, 2006). Furthermore, we review some of our previous works on Kinetically Constrained Models.

The Knight models correspond to a new class of kinetically constrained models which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to the underlying percolation transition of particles which are mutually blocked by the constraints. This jamming percolation has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law when ρ ↗ ρ c . These properties give rise for Knight models to an ergodicity breaking transition at ρ c : at and above ρ c a finite fraction of the system is frozen. In turn, this finite jump in the density of frozen sites leads to a two step relaxation for dynamic correlations in the unjammed phase, analogous to that of glass forming liquids. Also, due to the faster than power law divergence of the dynamical correlation length, relaxation times diverge in a way similar to the Vogel-Fulcher law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. De Benedetti and F. H. Stillinger, Nature 410:267 (2001).

    Google Scholar 

  2. E. R. Weeks, et al., Science 287:627 (2000); V. Trappe, et al., Nature 411:722 (2001).

    Article  ADS  Google Scholar 

  3. M. A. Ediger, Ann. Rev. Phys. Chem. 51:99 (2000); E. Vidal-Russel and N. E. Israeloff, Nature 408:695 (2000); L. A. Deschenes and D. A. Vande Bout, Science 292:255 (2001); L. Berthier, et al., Science 310:1797 (2005); C. Bennemann, et al., Nature 399:246 (1999); O. Dauchot, G. Marty, and G. Biroli, Phys. Rev. Lett. 95:265701 (2005).

    Article  Google Scholar 

  4. T. R. Kirkpatrick, D. Thirumalai, Phys. Rev. Lett. 58:2091 (1987); T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40:1045 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121:7347 (2004).

    Article  ADS  Google Scholar 

  6. X. Xia and P. G. Wolynes, PNAS 97:2990 (2000), and references therein.

    Article  ADS  Google Scholar 

  7. M. Dzero, J. Schmalian, and P. G. Wolynes, cond-mat/0502011.

  8. S. Franz, Europhys. Lett. 73:492 (2006).

    Article  ADS  Google Scholar 

  9. M. A. Moore, cond-mat 060241.

  10. J. Jackle, J. Phys. Cond. Matter. 14:1423 (2002).

    Article  ADS  Google Scholar 

  11. F. Ritort and P. Sollich, Adv. Phys. 52:219 (2003).

    Article  ADS  Google Scholar 

  12. G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53:1244 (1984); J. Chem. Phys. 84:5822 (1985).

    Article  ADS  Google Scholar 

  13. J. Jackle and S. Eisinger,Z. Phys. B: Cond. Mat. 84:115 (1991).

    Article  Google Scholar 

  14. W. Kob and H. C. Andersen, Phys. Rev. E 48:4364 (1993).

    Article  ADS  Google Scholar 

  15. P. Sollich and M. Evans, Phys. Rev. Lett. 83:3238 (1999).

    Article  ADS  Google Scholar 

  16. D. Aldous and P. Diaconis, J. Stat. Phys. 107:845 (2002).

    Article  MathSciNet  Google Scholar 

  17. J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89:035704 (2002).

    Article  ADS  Google Scholar 

  18. S. Whitelam, L. Berthier, and J. P. Garrahan, Phys. Rev. Lett. 92:185705 (2004); Phys. Rev. E 71:026128 (2005).

    Article  ADS  Google Scholar 

  19. L. Berthier and J. P. Garrahan, J. Chem. Phys. 119:4367 (2003).

    Article  ADS  Google Scholar 

  20. R. Jack, P. Mayer, and P. Sollich, cond-mat/0601529.

  21. J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. 100:9710 (2003).

    Article  ADS  Google Scholar 

  22. J. Reiter, J. Chem. Phys. 95, 544 (1991).

    Article  ADS  Google Scholar 

  23. G. H. Fredrickson and S. A. Brawer, J. Chem. Phys. 84:3351 (1986).

    Article  ADS  Google Scholar 

  24. M. Einax and M. Schulz, J. Chem. Phys. 115:2282 (2001).

    Article  ADS  Google Scholar 

  25. I. S. Graham, L. Piche and M. Grant, J. Phys. Cond. Matt. 5:6491 (1993); Phys. Rev. E 55:2132 (1997).

    Google Scholar 

  26. P. Harrowell, Phys. Rev. E 48:4359 (1993).

    Article  ADS  Google Scholar 

  27. G. H. Fredrickson, Ann. N. Y. Acad. Sci. 484:185 (1986).

    Article  Google Scholar 

  28. S. Butler and P. Harrowell, J. Chem. Phys. 95:4466 (1991).

    Article  ADS  Google Scholar 

  29. C. Toninelli, G. Biroli, and D. S. Fisher, in preparation.

  30. L. Berthier, G. Biroli, and C. Toninelli, in preparation.

  31. J. Reiter, F. Mauch, and J. Jackle, Physica A 184:493 (1992).

    Article  ADS  Google Scholar 

  32. C. Toninelli, G. Biroli, and D. S. Fisher, Phys. Rev. Lett. 92:185–504 (2004); J. Stat. Phys. 120:167 (2005).

    Google Scholar 

  33. C. Toninelli, G. Biroli, and D. S. Fisher, Phys. Rev. Lett. 96:035702 (2006).

    Article  ADS  Google Scholar 

  34. C. Toninelli and G. Biroli, cond-mat/0512335.

  35. L. Bertini and C. Toninelli, J. Stat. Phys. 117:549–580 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Toninelli and G. Biroli, J. Stat. Phys. 117:27–54 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  37. N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli, in preperation.

  38. J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mezard, in Spin-Glasses and Random Fields, edited by A. P. Young (World Scientific, 1997).

  39. J. Chalupa, P. L. Leath, and R. Reich, J. Phys. C: Solid State Phys. 12:L31 (1979).

    Article  ADS  Google Scholar 

  40. B. Pittel, J. Spencer, and N. Wormald, J. Comb. Th. B 67:111 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  41. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. Lett. 96:040601 (2006).

    Article  ADS  Google Scholar 

  42. J. M. Schwarz, A. J. Liu, and L. Q. Chayes, Europhys. Lett. 73:560 (2006).

    Article  ADS  Google Scholar 

  43. M. Sellitto, G. Biroli, and C. Toninelli, Europhys. Lett. 69(4):496 (2005).

    Article  ADS  Google Scholar 

  44. G. Biroli and J.-P. Bouchaud, Europhys. Lett. 67:21 (2004).

    Article  ADS  Google Scholar 

  45. G. Biroli, J. -P. Bouchaud, K. Miyazaki, and D. R. Reichman, Inhomogeneous Mode-Coupling Theory and Growing Dynamic Length in Supercooled Liquids, cond-mat/0605733.

  46. S. Franz and G. Parisi, J. Phys.: Cond. Matter 12:6335 (2000).

    Article  ADS  Google Scholar 

  47. E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89:095704 (2002); Chem. Phys. 284:361 (2002).

    Article  ADS  Google Scholar 

  48. G. Marty and O. Dauchot, Phys. Rev. Lett. 94:015701 (2005).

    Article  ADS  Google Scholar 

  49. H. Hinrichsen, Adv. Phys. 49:815 (2000).

    Article  ADS  Google Scholar 

  50. Abdelaziz Amraoui, Andrea Montanari, Tom Richardson, and Rudiger Urbanke, 42nd Allerton Conference on Communication, Control and Computing, cs.IT/0410019. A. Dembo and A. Montanari, in preparation.

  51. L. Berthier, Phys. Rev. Lett. 91:055701 (2003).

    Article  ADS  Google Scholar 

  52. W. Kob, in Slow relaxations and nonequilibrium dynamics in condensed matter, vol. Session LXXVII of Les Houches Summer School (ed. J.-L. Barrat, M. Feigelman and J. Kurchan), published by EDP Sciences and Springer.

  53. H. Spohn, Large Sale Dyanmics of Interacting Particles (Springer, Berlin, 1991).

    Google Scholar 

  54. A. Montanari and G. Semerjian, Rigorous Inequalities between Length and Time Scale in Glassy Systems, cond-mat/0603018.

  55. J. Adler, Physica A 171:435 (1991).

    Article  Google Scholar 

  56. M. Aizenmann and J. L. Lebowitz, J. Phys. A 21:3801 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  57. R. H. Schonmann, Ann. Probab. 20:174–193 (1992).

    MATH  MathSciNet  Google Scholar 

  58. H. Spohn, J. Stat. Phys. 59:1227 (1990); Physica A 163:134 (1990).

    Article  MathSciNet  Google Scholar 

  59. C. Kipnis and S. R. S. Varadhan, Comm. Math. Phys. 104:1 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Grundlheren der Mathematischen Wissenschaften 320 (Springer-Verlag, Berlin, New York, 1999).

    Google Scholar 

  61. P. Goncalves, C. Landim, and C. Toninelli, in preparation.

  62. J. Kurchan, L. Peliti, and M. Sellitto, Europhys. Lett. 39:365 (1997).

    Article  ADS  Google Scholar 

  63. P. De Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson, Phys. Rev. Lett. 93:025501 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Toninelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toninelli, C., Biroli, G. Jamming Percolation and Glassy Dynamics. J Stat Phys 126, 731–763 (2007). https://doi.org/10.1007/s10955-006-9177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9177-9

Keywords

Navigation