Skip to main content
Log in

Relaxation Dynamics of Non-Brownian Spheres Below Jamming

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We numerically study the relaxation dynamics and associated criticality of non-Brownian frictionless soft spheres below jamming in spatial dimensions \(d=2\), 3, 4, and 8, and in the mean-field Mari–Kurchan model. We discover non-trivial finite-size and volume fraction dependences of the relaxation time associated to the relaxation of unjammed packings. In particular, the relaxation time is shown to diverge logarithmically with system size at any density below jamming, and no critical exponent can characterise its behaviour approaching jamming. In mean-field, the relaxation time is instead well-defined: it diverges at jamming with a critical exponent that we determine numerically and differs from an earlier mean-field prediction. We rationalise the finite d logarithmic divergence using an extreme-value statistics argument in which the relaxation time is dominated by the most connected region of the system. The same argument shows that the earlier proposition that relaxation dynamics and shear viscosity are directly related breaks down in large systems. The shear viscosity of non-Brownian packings is well-defined in all d in the thermodynamic limit, but large finite-size effects plague its measurement close to jamming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, A.J., Nagel, S.R.: Jamming is not just cool any more. Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  2. O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  3. O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  4. Goodrich, C.P., Liu, A.J., Nagel, S.R.: Finite-size scaling at the Jamming transition. Phys. Rev. Lett. 109, 095704 (2012)

    Article  ADS  Google Scholar 

  5. Wyart, M.: Marginal stability constrains force and pair distributions at random close packing. Phys. Rev. Lett. 109, 125502 (2012)

    Article  ADS  Google Scholar 

  6. Charbonneau, P., Corwin, E.I., Parisi, G., Zamponi, F.: Universal microstructure and mechanical stability of Jammed packings. Phys. Rev. Lett. 109, 205501 (2012)

    Article  ADS  Google Scholar 

  7. Lerner, E., During, G., Wyart, M.: Low-energy non-linear excitations in sphere packings. Soft Matter 9, 8252 (2013)

    Article  ADS  Google Scholar 

  8. Charbonneau, P., Corwin, E.I., Parisi, G., Zamponi, F.: Jamming criticality revealed by removing localized buckling excitations. Phys. Rev. Lett. 114, 125504 (2015)

    Article  ADS  Google Scholar 

  9. Wyart, M., Silbert, L.E., Nagel, S.R., Witten, T.A.: Effects of compression on the vibrational modes of marginally jammed solids. Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  10. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution, Journal of Statistical Mechanics: Theory and Experiment 2014, P10009 (2014a)

  11. DeGiuli, E., Lerner, E., Brito, C., Wyart, M.: Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids. Proc. Nat. Acad. Sci. 111, 17054 (2014)

    Article  ADS  Google Scholar 

  12. Heussinger, C., Barrat, J.-L.: Jamming transition as probed by quasistatic shear flow. Phys. Rev. Lett. 102, 218303 (2009)

    Article  ADS  Google Scholar 

  13. Heussinger, C., Berthier, L., Barrat, J.L.: Superdiffusive, heterogeneous, and collective particle motion near the fluid-solid transition in athermal disordered materials. Europhys. Lett. 90, 20005 (2010)

    Article  ADS  Google Scholar 

  14. Andreotti, B., Barrat, J.-L., Heussinger, C.: Shear flow of non-brownian suspensions close to Jamming. Phys. Rev. Lett. 109, 105901 (2012)

    Article  ADS  Google Scholar 

  15. Ikeda, A., Berthier, L., Biroli, G.: Dynamic criticality at the Jamming transition. J. Chem. Phys. 138, 12A507 (2013a)

    Article  Google Scholar 

  16. Ikeda, A., Berthier, L., Sollich, P.: Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9, 7669 (2013b)

    Article  ADS  Google Scholar 

  17. Vågberg, D., Olsson, P., Teitel, S.: Dissipation and rheology of sheared soft-core frictionless disks below Jamming. Phys. Rev. Lett. 112, 208303 (2014)

    Article  ADS  Google Scholar 

  18. Trulsson, M., Bouzid, M., Kurchan, J., Clément, E., Claudin, P., Andreotti, B.: Athermal analogue of sheared dense Brownian suspensions. Europhys. Lett. 111, 18001 (2015)

    Article  ADS  Google Scholar 

  19. Atkinson, S., Zhang, G., Hopkins, A.B., Torquato, S.: Critical slowing down and hyperuniformity on approach to Jamming. Phys. Rev. E 94, 012902 (2016)

    Article  ADS  Google Scholar 

  20. Hexner, D., Liu, A.J., Nagel, S.R.: Two diverging length scales in the structure of Jammed packings. Phys. Rev. Lett. 121, 115501 (2018)

    Article  ADS  Google Scholar 

  21. Hexner, D., Urbani, P., Zamponi, F.: Can a large packing be assembled from smaller ones? Phys. Rev. Lett. 123, 068003 (2019)

    Article  ADS  Google Scholar 

  22. Arceri, F., Corwin, E.I.: Vibrational properties of hard and soft spheres are unified at Jamming. Phys. Rev. Lett. 124, 238002 (2020)

    Article  ADS  Google Scholar 

  23. Olsson, P., Teitel, S.: Critical scaling of shear viscosity at the Jamming transition. Phys. Rev. Lett. 99, 178001 (2007)

    Article  ADS  Google Scholar 

  24. Mewis, J., Wagner, N.J.: Colloidal suspension rheology, Colloidal suspension rheology ( Cambridge University Press, 2012)

  25. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40, 1 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)

    Article  ADS  Google Scholar 

  27. Lerner, E., Düring, G., Wyart, M.: A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc. Nat. Acad. Sci. 109, 4798 (2012a)

    Article  ADS  Google Scholar 

  28. Olsson, P., Teitel, S.: Critical scaling of shearing rheology at the jamming transition of soft-core frictionless disks. Phys. Rev. E 83, 030302 (2011)

    Article  ADS  Google Scholar 

  29. Kawasaki, T., Coslovich, D., Ikeda, A., Berthier, L.: Diverging viscosity and soft granular rheology in non-Brownian suspensions. Phys. Rev. E 91, 012203 (2015)

    Article  ADS  Google Scholar 

  30. Olsson, P., Teitel, S.: Finite-Size Scaling at the Jamming Transition, (2020) arXiv:2004.09311 [cond-mat.soft]

  31. Durian, D.J.: Foam mechanics at the bubble scale. Phys. Rev. Lett. 75, 4780 (1995)

    Article  ADS  Google Scholar 

  32. Hatano, T.: Growing length and time scales in a suspension of athermal particles. Phys. Rev. E 79, 050301 (2009)

    Article  ADS  Google Scholar 

  33. Olsson, P.: Relaxation times and rheology in dense athermal suspensions. Phys. Rev. E 91, 062209 (2015)

    Article  ADS  Google Scholar 

  34. Olsson, P.: Dimensionality and viscosity exponent in shear-driven Jamming. Phys. Rev. Lett. 122, 108003 (2019)

    Article  ADS  Google Scholar 

  35. Ikeda, A., Kawasaki, T., Berthier, L., Saitoh, K., Hatano, T.: Colloidal suspension rheology. Phys. Rev. Lett. 124, 058001 (2020)

    Article  ADS  Google Scholar 

  36. Saitoh, K., Hatano, T., Ikeda, A., Tighe, B.P.: Stress relaxation above and below the Jamming transition. Phys. Rev. Lett. 124, 118001 (2020)

    Article  ADS  Google Scholar 

  37. Ikeda, H.: Note: relaxation time below jamming, arXiv preprint arXiv:2007.11166 (2020)

  38. Lerner, E., Düring, G., Wyart, M.: Toward a microscopic description of flow near the jamming threshold, EPL (Europhysics Letters) 99, 58003 (2012b)

  39. DeGiuli, E., Düring, G., Lerner, E., Wyart, M.: Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91, 062206 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  40. Hwang, S., Ikeda, H.: Force balance controls the relaxation time of the gradient descent algorithm in the satisfiable phase. Phys. Rev. E 101, 052308 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  41. Nordstrom, K.N., Verneuil, E., Arratia, P.E., Basu, A., Zhang, Z., Yodh, A.G., Gollub, J.P., Durian, D.J.: Microfluidic rheology of soft colloids above and below jamming. Phys. Rev. Lett. 105, 175701 (2010)

    Article  ADS  Google Scholar 

  42. Kraichnan, R.H.: Stochastic models for many body systems. I. Infinite systems in thermal equilibrium. J. Math. Phys. 3, 4753 (1962)

    MathSciNet  Google Scholar 

  43. Mari, R., Krza̧kała, F., Kurchan, J.: Jamming versus glass transition. Phys. Rev. Lett. 103, 025701 (2009)

    Article  ADS  Google Scholar 

  44. Mari, R., Kurchan, J.: Dynamical transition of glasses: from exact to approximate. J. Chem. Phys. 135, 124504 (2011)

    Article  ADS  Google Scholar 

  45. Charbonneau, P., Jin, Y., Parisi, G., Zamponi, F.: Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution. In: Proceedings of the National Academy of Sciences 111, 15025 ( 2014b), arXiv:1407.5677

  46. Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921 (1972)

    Article  ADS  Google Scholar 

  47. Vågberg, D., Valdez-Balderas, D., Moore, M.A., Olsson, P., Teitel, S.: Finite-size scaling at the jamming transition: corrections to scaling and the correlation-length critical exponent. Phys. Rev. E 83, 030303 (2011)

    Article  ADS  Google Scholar 

  48. Sartor, J.D., Ridout, S.A., Corwin, E.I.: (2020), arXiv:2006.09592 [cond-mat.soft]

  49. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional Isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  50. Shen, T., O’Hern, C.S., Shattuck, M.D.: Contact percolation transition in athermal particulate systems. Phys. Rev. E 85, 011308 (2012)

    Article  ADS  Google Scholar 

  51. Bardou, F., Bouchaud, J.-P., Aspect, A., Cohen-Tannoudji, C.: Lévy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest. How Rare Events Bring Atoms to Rest (Cambridge University Press, Lévy Statistics and Laser Cooling (2001)

  52. Fortin, J.Y., Clusel, M.: Applications of extreme value statistics in physics. J. Phys. A 48, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Cates, H. Ikeda, P Olsson, M. Wyart, and F. Zamponi for useful discussions. This work was supported by a grant from the Simons Foundation (Grant No. 454933, L. B.) and JSPS KAKENHI grants (Nos. 18H05225, 19H01812, 20H01868, and 20H00128, A. I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Nishikawa.

Additional information

Communicated by Andrea Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, Y., Ikeda, A. & Berthier, L. Relaxation Dynamics of Non-Brownian Spheres Below Jamming. J Stat Phys 182, 37 (2021). https://doi.org/10.1007/s10955-021-02710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02710-8

Keywords

Navigation