Skip to main content
Log in

Condensation in a Disordered Infinite-Range Hopping Bose–Hubbard Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Bose–Einstein Condensation (BEC) in the Infinite-Range-Hopping Bose–Hubbard model with repulsive on-site particle interaction in the presence of an ergodic random single-site external potential with different distributions. We show that the model is exactly soluble even if the on-site interaction is random. We observe new phenomena: instead of enhancement of BEC for perfect bosons, for constant on-site repulsion and discrete distributions of the single-site potential there is suppression of BEC at certain fractional densities. We show that this suppression appears with increasing disorder. On the other hand, the suppression of BEC at integer densities observed in Bru and Dorlas (J. Stat. Phys. 113:177–195, 2003) in the absence of a random potential, can disappear as the disorder increases. For a continuous distribution we prove that the BEC critical temperature decreases for small on-site repulsion while the BEC is suppressed at integer values of the density for large repulsion. Again, the threshold for this repulsion gets higher, when disorder increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsubara and H. Matsuda, A lattice model of liquid helium. Progr. Theor. Phys. 16:569–582 (1956)

    Article  MATH  ADS  Google Scholar 

  2. D. Ueltschi, Geometric and probabilistic aspects of boson lattice models. In Progr. Probab. 51:363–391 (Birkhäuser, Boston, MA, 2002)

    MATH  MathSciNet  Google Scholar 

  3. G. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415:39–44 (2002)

    Article  ADS  Google Scholar 

  4. J.-B. Bru and T. C. Dorlas, Exact solution of the infinite-range-hoping Bose–Hubbard model. J. Stat. Phys. 113:177–195 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Aizenman, E. H. Lieb, R. Seilinger, J. P. Solovej and J. Yngvason, Bose–Einstein quantum phase transition in an optical lattice model. Phys. Rev. A 70:023612-1–12 (2004)

    ADS  Google Scholar 

  6. M. Kac and J. M. Luttinger, Bose–Einstein condensation in the presence of impurities. J. Math. Phys. 14:1626–1628 (1973)

    Article  MathSciNet  Google Scholar 

  7. M. Kac and J. M. Luttinger, Bose–Einstein condensation in the presence of impurities II. J. Math. Phys. 15:183–186 (1974)

    Article  MathSciNet  Google Scholar 

  8. J. M. Luttinger and H. K. Sy, Bose–Einstein condensation in a One-Dimentional Model with Random Impurities. Phys. Rev. A 7:712–720 (1973)

    Article  ADS  Google Scholar 

  9. O. Lenoble, L. A. Pastur and V. A. Zagrebnov, Bose–Einstein condensation in random potentials. Comptes-Rendus de l'Académie des Sciences (Physique) 5: 129–142 (2004)

    Google Scholar 

  10. O. Lenoble and V. A. Zagrebnov, Bose–Einstein condensation in the Luttinger-Sy model. (subm. to Markov Proc. & Rel. Fields)

  11. M. P. A. Fisher, P. B. Weichman, G. Grinstein and D. S. Fisher, Boson localization and the superfluid-insulator transition. Phys. Rev. B 40:456–470 (1989)

    Article  ADS  Google Scholar 

  12. M. Kobayashi and M. Tsubota, Bose–Einstein condensation and superfluidity of a dilute Bose gas in a random potential. Phys. Rev. B 66:174516-1–7 (2002)

    ADS  Google Scholar 

  13. W. Krauth, N. Trivedi and D. Ceperley, Superfluid-insulator transition in disordered boson systems. Phys. Rev. Lett. 67:2303–2310 (1991)

    Article  ADS  Google Scholar 

  14. T. Kennedy, E. H. Lieb and B. S. Shastry, The X-Y model has long-range order for all spins and all dimensions geater than one. Phys. Rev. Lett. 61:2582–2584 (1988)

    Article  ADS  Google Scholar 

  15. N. Angelescu and M. Bundaru, A remark on the condensation in the hard-core lattice bose gas. J. Stat. Phys. 69:897–903 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. N. N. Bogolyubov Jr., J. Brankov, V. A. Zagrebnov, A. M. Kurbatov and N. Tonchev, Some classes of exactly soluble models of problems in Quantum Statistical Mechanics: The method of approximating Hamiltonian. Russian Math. Surveys 39:1–50 (1984)

    Article  MathSciNet  Google Scholar 

  17. L. A. Pastur and A. L. Figotin, Theory of disordered spin systems. Theor. Math. Phys. 35: 403–414 (1978)

    Article  MathSciNet  Google Scholar 

  18. L. A. Pastur and M. V. Shcherbina, Infinite-range limit for correlation functions of lattice systems. Theor. Math. Phys. 61:955–964 (1983)

    Article  Google Scholar 

  19. M. Reed and B. Simon, Method of Modern Analysis II: Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975)

    Google Scholar 

  20. V. A. Zagrebnov and J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350:291–434 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. E. B. Davis, One-Parameter Semigroups (Academic Press, London, 1980)

    Google Scholar 

  22. H. Neidhardt and V. A. Zagrebnov, Regularization and convergence for singular perturbations. Commun. Math. Phys. 149:573–586 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. M. Reed and B. Simon, Method of Modern Analysis I: Functional Analysis (Academic Press, New York, 1972)

    Google Scholar 

  24. V. A. Zagrebnov, Topics in the Theory of Gibbs Semigroups, Lecture Notes in Mathematical and Theoretical Physics, Vol. 10 (Leuven University Press, Leuven 2003)

    Google Scholar 

  25. T. Kato, Perturbation theory for linear operators, 2nd ed. (Springer Verlag, Berlin 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Dorlas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorlas, T.C., Pastur, L.A. & Zagrebnov, V.A. Condensation in a Disordered Infinite-Range Hopping Bose–Hubbard Model. J Stat Phys 124, 1137–1178 (2006). https://doi.org/10.1007/s10955-006-9176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9176-x

Keywords

Navigation