Skip to main content
Log in

Moment Systems Derived from Relativistic Kinetic Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the derivation of macroscopic equations from kinetic ones using a moment method in a relativistic framework. More precisely, we establish the general form of moments that are compatible with the Lorentz invariance and derive a hierarchy of relativistic moment systems from a Boltzmann kinetic equation. The proof is based on the representation theory of Lie algebras. We then extend this derivation to the classical case and general families of moments that obey the Galilean invariance are also constructed. It is remarkable that the set of formal classical limits of the so-obtained relativistic moment systems is not identical to the set of classical moments quoted in Ref. 21 and one could use a new physically relevant criterion to derive suitable moment systems in the classical case. Finally, the ultra-relativistic limit is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bérestetski, E. Lifshitz and L. Pitayevski, Course of Theoretical Physics [“Landau-Lifshits”]. Vol. 4 Quantum electrodynamics. (Pergamon Press, Oxford, 1989).

    Google Scholar 

  2. G. Boillat and T. Ruggeri, Maximum wave velocity in the moments system of a relativistic gas. Contin. Mech. Thermodyn. 11: 107–111 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. G. Boillat and T. Ruggeri, Relativistic gas: moment equations and maximum wave velocity. J. Math. Phys. 40: 6399–6406 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. N. Chernikov, The relativistic gas in the gravitational field, Acta Phys. Polon. 23: 629–645 (1963).

    MathSciNet  Google Scholar 

  5. B. Doubrovine, S. Novikov and A. Fomenko. Géométrie Contemporaine, Méthodes et Applications. Première Partie, Editions Mir, 1982.

  6. W. Dreyer, Maximisation of the entropy in nonequilibrium. J. Phys. A 20: 6505–6517 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. W. Dreyer and W. Weiss, The classical limit of relativistic extended thermodynamics. Ann. Inst. H. Poincaré Phys. Théor. 45: 401–418 (1986).

    MATH  MathSciNet  Google Scholar 

  8. M. Escobedo, S. Mischler and M. A. Valle, Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron. J. Differ. Equ. Monogr. 4 Southwest Texas State University, San Marcos, TX, 85 pp. 4 (2003).

  9. W. Fulton and J. Harris. Representation Theory, A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics: Springer-Verlag, New York, 1991.

  10. R. T. Glassey. The Cauchy Problem in Kinetic Theory: SIAM, 1996.

  11. H. Grad. Principles of the kinetic theory of gases: Handbuch der Physik (Herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase pp. (Springer-Verlag, Berlin-Götingen-Heidelberg) 205–294 (1958).

  12. S. R. De Groot, W. A. Van Leeuwen and Ch. G. Van Weert, Relativistic Kinetic Theory, Principles and Applications, (North-Holland, 1980).

  13. B. C. Hall. Lie Groups, Lie Algebras, and Representations, A Elementary Introduction: (Springer, 2003).

  14. M. Junk, Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10: 1001–1025 (2000).

    MATH  MathSciNet  Google Scholar 

  15. M. Junk and A. Unterreiter, Maximum entropy moment systems and Galilean invariance. Contin. Mech. Thermodyn. 14: 563–576 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. M. Kunik, S. Qamar and G. Warnecke, Kinetic schemes for the ultra-relativistic Euler equations. J. Comput. Phys. 187: 572–596 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. M. Kunik, S. Qamar and G. Warnecke, Kinetic schemes for the relativistic gas dynamics. Numer. Math. 97: 159–191 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics [“Landau-Lifshits”]. Vol. 2 The Classical Theory of Fields: (Pergamon Press, Oxford, 1989).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics [“Landau-Lifshits”]. Vol. 6 Fluid Mechanics: (Pergamon Press, Oxford, 1989).

    Google Scholar 

  20. S. Lang. Algebra: (Addison-Wesley Publishing Company, 1995).

  21. C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys. 83: 1021–1065 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. I. Müller and T. Ruggeri. Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37. (Springer-Verlag, New York, 1993).

    Google Scholar 

  23. I. Müller and T. Ruggeri. Rational Extended Thermodynamics: Second edition. Springer Tracts in Natural Philosophy, 37. (Springer-Verlag, New York, 1998).

    Google Scholar 

  24. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics, Contin. Mech. Thermodyn. 1: 3–20 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. J. Schneider, Entropic approximation in kinetic theory. M2AN Math. Model. Numer. Anal. 38: 541–561 (2004).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Bagland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagland, V., Degond, P. & Lemou, M. Moment Systems Derived from Relativistic Kinetic Equations. J Stat Phys 125, 621–659 (2006). https://doi.org/10.1007/s10955-006-9173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9173-0

Keywords

Navigation