Skip to main content
Log in

Random-Cluster Representation of the Blume–Capel Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The so-called diluted-random-cluster model may be viewed as a random-cluster representation of the Blume–Capel model. It has three parameters, a vertex parameter a, an edge parameter p, and a cluster weighting factor q. Stochastic comparisons of measures are developed for the ‘vertex marginal’ when q ∊ [1,2], and the ‘edge marginal’ when q ∊ [1,∞). Taken in conjunction with arguments used earlier for the random-cluster model, these permit a rigorous study of part of the phase diagram of the Blume–Capel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, D. J. Barsky and R. Fernández, The phase transition in a general class of Ising-type models is sharp. Comm. Math. Phys. 47:343–374 (1987).

    Google Scholar 

  2. M. Aizenman, J. Bricmont and J. L. Lebowitz, Percolation of the minority spins in high dimensional Ising models. J. Statist. Phys. 49:859–865 (1987).

    Article  MATH  ADS  Google Scholar 

  3. M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/|x , y|2 Ising and Potts models. J. Statist. Phys. 50:1–40 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models. J. Statist. Phys. 44:393–454 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. K. Alexander, The asymmetric random cluster model and comparison of Ising and Potts models. Probab. Th. Rel. Fields 120:395–444 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Benjamini, R. Lyons, Y. Peres and O. Schramm, Uniform spanning forests. Ann. Probab. 29:1–65 (2001).

    MATH  MathSciNet  Google Scholar 

  7. M. Biskup, C. Borgs, J. Chayes and R. Kotecký, Partition function zeros at first-order phase transitions: Pirogov–Sinai theory. J. Statist. Phys. 116:97–155 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. M. Biskup, L. Chayes and N. Crawford, Mean-field driven first-order phase transitions in systems with long-range interactions. J. Statist. Phys. 122:1139–1193 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. M. Blume, Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141:517–524 (1966).

    Article  ADS  Google Scholar 

  10. M. B. Bouabci and C. E. I. Carneiro, Random-cluster representation for the Blume-Capel model. J. Statist. Phys. 100:805–827 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states. J. Statist. Phys. 54:89–161 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. M. Burton and M. Keane, Density and uniqueness in percolation. Comm. Math. Phys. 121:501–505 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. H. W. Capel, On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting. Physica 32:966–988 (1966).

    Article  ADS  Google Scholar 

  14. H. W. Capel, On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting. Physica 33:295–331 (1967).

    Article  ADS  Google Scholar 

  15. H. W. Capel, On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting. Physica 37:423–441 (1967).

    Article  ADS  Google Scholar 

  16. L. Chayes and L. Machta, Graphical representations and cluster algorithms, Part I: discrete spin systems. Physica A 239:542–601 (1997).

    Article  ADS  Google Scholar 

  17. L. Chayes and L. Machta, Graphical representations and cluster algorithms, II. Physica A 254:477–516 (1998).

    Article  Google Scholar 

  18. E. N. M. Cirillo and E. Olivieri, Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition. J. Statist. Phys. 83:473–554 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. A. Coniglio, C. R. Nappi, F. Peruggi and L. Russo, Percolation points and critical point in the Ising model. J. Phys. A 10:205–218 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  20. K. J. Falconer, The Geometry of Fractal Sets. (Cambridge University Press, Cambridge, 1985).

    MATH  Google Scholar 

  21. R. Fernández, J. Fröhlich and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. (Springer, Berlin, 1992).

    MATH  Google Scholar 

  22. C. M. Fortuin, P. W. Kasteleyn and J. Ginibre, Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22:89–103 (1971).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. S. Friedli and C.-E. Pfister, On the singularity of the free energy at a first order phase transition. Comm. Math. Phys. 245:69–103 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. A. Gandolfi, M. Keane and L. Russo, On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation. Ann. Probab. 16:1147–1157 (1988).

    MATH  MathSciNet  Google Scholar 

  25. H.-O. Georgii, O. Häggström and C. Maes, The random geometry of equilibrium phases. In Phase Transitions and Critical Phenomena, volume 18, pp. 1–142. (Academic Press, San Diego, CA, 2001).

    Google Scholar 

  26. G. R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures. Ann. Probab. 23:1461–1510 (1995).

    MATH  MathSciNet  Google Scholar 

  27. G. R. Grimmett, The random-cluster model. In H. Kesten (ed.), Probability on Discrete Structures, volume 110 of Encyclopaedia of Mathematical Sciences, pp. 73–123. (Springer, Berlin, 2003).

    Google Scholar 

  28. G. R. Grimmett, The Random-Cluster Model. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  29. G. R. Grimmett and M. S. T. Piza, Decay of correlations in random-cluster models. Comm. Math. Phys. 189:465–480 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Y. Higuchi, Coexistence of infinite *-clusters. II. Ising percolation in two dimensions. Prob. Th. Rel. Fields 97:1–33 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  31. Y. Higuchi, A sharp transition for the two-dimensional Ising percolation. Prob. Theor. Rel. Fields 97:489–514 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Holley, Remarks on the FKG inequalities. Comm. Math. Phys. 36:227–231 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  33. O. Hryniv and R. Kotecký, Surface tension and Ornstein-Zernike behaviour for the 2d Blume-Capel model. J. Statist. Phys. 106:431–476 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  34. C.-K. Hu, Correlated percolation and phase transitions in Ising-like spin models. Chin. J. Phys. 32:1–12 (1984).

    MATH  ADS  Google Scholar 

  35. R. Kotecký and S. Shlosman, First order phase transitions in large entropy lattice systems. Comm. Math. Phys. 83:493–515 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  36. L. Laanait, A. Messager, S. Miracle-Solé, J. Ruiz and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Comm. Math. Phys. 140:81–91 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. J. L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium state for Ising spin systems. Comm. Math. Phys. 25:276–282 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  38. J. L. Lebowitz and J. L. Monroe, Inequalities for higher order Ising spins and for continuum fluids. Comm. Math. Phys. 28:301–311 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  39. E. Olivieri and F. Manzo, Dynamical Blume-Capel model: competing metastable states at infinite volume. J. Statist. Phys. 104:1029–1090 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  40. R. B. Potts, Some generalized order-disorder transformations. Proc. Camb. Phil. Soc. 48:106–109 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  41. L. Russo, The infinite cluster method in the two-dimensional Ising model. Comm. Math. Phys. 67:251–266 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  43. R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulation. Phys. Rev. Lett. 58:86–88 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Grimmett.

Additional information

Mathematics Subject Classification (2000): 82B20, 60K35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, B.T., Grimmett, G.R. Random-Cluster Representation of the Blume–Capel Model. J Stat Phys 125, 283–316 (2006). https://doi.org/10.1007/s10955-006-9135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9135-6

Keywords

Navigation