Skip to main content
Log in

Driven Diffusive Systems of Active Filament Bundles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The cytoskeleton is an important subsystem of cells that is involved for example in cell division and locomotion. It consists of filaments that are cross-linked by molecular motors that can induce relative sliding between filaments and generate stresses in the network. In order to study the effects of fluctuations on the dynamics of such a system we introduce here a new class of driven diffusive systems mimicking the dynamics of active filament bundles where the filaments are aligned with respect to a common axis. After introducing the model class we first analyze an exactly solvable case and find condensation. For the general case we perform a mean-field analysis and study the behavior on large length scales by coarse-graining. We determine conditions for condensation and establish a relation between the hopping rates and the tension generated in the bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Schmittmann and R. K. P. Zia, in Statistical mechanics of driven diffusive systems, C. Domb and J. L. Lebowitz, eds. (New York: Academic Press 1995).

  2. B. Alberts et al., Molecular Biology of the Cell 4th ed., Garland, New York (2002).

    Google Scholar 

  3. D. Bray, Cell Movements 2nd ed., Garland, (New York 2001).

    Google Scholar 

  4. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc., Sunderland (2001).

    Google Scholar 

  5. E. B. Stukalin and A. B. Kolomeisky, J. Chem. Phys. 121:1097 (2004).

    Article  ADS  Google Scholar 

  6. A. B. Kolomeisky and B. Widom, J. Stat. Phys. 93:633 (1998).

    Article  MATH  Google Scholar 

  7. M. E. Fisher and A. B. Kolomeisky, PNAS 96:6597 (1999).

  8. R. Lipowsky, S. Klumpp, and T. M. Nieuwenhuizen, Phys. Rev. Lett. 87:108101 (2001).

    Article  ADS  Google Scholar 

  9. K. Kruse and K. Sekimoto, Phys. Rev. E 66:031904 (2002).

    Article  ADS  Google Scholar 

  10. A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90:086601 (2003).

    Article  ADS  Google Scholar 

  11. K. Takiguchi, J. Biochem. 109:520 (1991).

    Google Scholar 

  12. Y. Tanaka-Takiguchi et al., J. Mol. Biol. 341:467 (2004).

    Article  Google Scholar 

  13. H. Y. Lee and M. Kardar, Phys. Rev. E 64:056113 (2001).

    Article  ADS  Google Scholar 

  14. J. Kim et al., J. Korean Phys. Soc. 42:162 (2003).

    Google Scholar 

  15. K. Kruse, A. Zumdieck and F. Jülicher, Europhys. Lett. 64:716 (2003).

    Article  ADS  Google Scholar 

  16. K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto, Phys. Rev. Lett. 92:078101 (2004).

    Article  ADS  Google Scholar 

  17. K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto, Eur. Phys. J. E 16:5 (2005).

    Article  Google Scholar 

  18. A. Zumdieck et al., Phys. Rev. Lett. 95:258103 (2005).

    Article  ADS  Google Scholar 

  19. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89:058101 (2002).

    Article  ADS  Google Scholar 

  20. J. Toner, Y. Tu, and S. Ramaswamy, Ann. Phys. 318:170 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. K. Kruse and F. Jülicher, Phys. Rev. Lett. 85:1778 (2000).

    Article  ADS  Google Scholar 

  22. K. Kruse and F. Jülicher, Phys. Rev. E 67:051913 (2003).

    Article  ADS  Google Scholar 

  23. T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett. 90:138102 (2003).

    Article  ADS  Google Scholar 

  24. T. B. Liverpool and M. C. Marchetti, Europhys. Lett. 69:846 (2005).

    Article  ADS  Google Scholar 

  25. A. Zumdieck, K. Kruse, and F. Jülicher, in preparation.

  26. K. Kruse, S. Camalet, and F. Jülicher, Phys. Rev. Lett. 87:138101 (2001).

    Article  ADS  Google Scholar 

  27. M. R. Evans and T. Hanney, J. Phys. A Math. Gen. 38:R195 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, P.K., Kruse, K. Driven Diffusive Systems of Active Filament Bundles. J Stat Phys 128, 95–110 (2007). https://doi.org/10.1007/s10955-006-9125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9125-8

Keywords

Navigation