Skip to main content
Log in

Clustering Properties in Turbulent Signals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the telegraph approximation (TA) of turbulent signals by ignoring their amplitude variability and retaining only their ‘zero’-crossing information. We establish a unique relationship between the spectral exponent of a signal and that of its TA, whenever the signal possesses a Gaussian PDF and a spectral shape in which the high-frequency cut-off is sufficiently sharp. The velocity signals in most turbulent flows away from the wall satisfy these conditions adequately, so that the Kolmogorov spectral exponent of −5/3 for the turbulent velocity spectrum corresponds to a −4/3 spectral exponent for its TA. By introducing a new scaling exponent to characterize the tendency of small-scale fluctuations to cluster, we show that the velocity and passive scalar signals display a finite tendency to cluster even in the limit of Re \(\rightarrow \infty\). We advance the notion, on the basis of the properties of the TA, that turbulent processes belong to one of two classes—either the ‘white noise’ type or the ‘Markov-Lorentzian’ type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Barenblatt and N. Goldenfeld, Phys. Fluids 7:3078 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. T. Barnett and B. Kedem, IEEE Trans. Inform. Theory 37:1188 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bershadskii, J. J. Niemela, A. Praskovsky and K. R. Sreenivasan, Phys. Rev. E 69:056314 (2004).

    Article  ADS  Google Scholar 

  4. B. Castaing, Y. Gagne and E. J. Hopfinger, Physica D 46:177 (1990).

    Article  ADS  MATH  Google Scholar 

  5. A. Deliu and B. Jawerth, Constr. Approx. 8:211 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Eyink, privite communication.

  7. K. J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985).

    MATH  Google Scholar 

  8. G. Falkovich and K. R. Sreenivasan, Phys. Today xx:xxx (2006). A2

    Google Scholar 

  9. M. Hinich, Technometrics 9:391 (1967).

    Article  MathSciNet  Google Scholar 

  10. P. Kailasnath and K. R. Sreenivasan, Phys. Fluids 5:2879 (1993).

    Article  ADS  Google Scholar 

  11. P. Kailasnath, K. R. Sreenivasan and J. R. Saylor, Phys. Fluids A 5:3207 (1993).

    Article  ADS  Google Scholar 

  12. G. G. Katul, C. I. Hsieh and J. Sigmon, Boundary Layer Meteor. 82:49 (1997).

    Article  ADS  Google Scholar 

  13. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 30:9–13 (1941); reproduced in Proc. Roy. Soc. A 434:9–14 (1991).

    Google Scholar 

  14. M. R. Leadbetter and J. D. Gryer, Bull. Am. Math. Soc. 71:561 (1965).

    Article  MATH  Google Scholar 

  15. V. S. L'vov and I. Procaccia, Phys. Rev. Lett. 74:2690 (1995).

    Article  ADS  Google Scholar 

  16. G. Molchan, private communication.

  17. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT Press, Cambridge, 1975).

    Google Scholar 

  18. A. M. Obukhov, J. Fluid Mech. 13:77 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. R. Pearson, P.-A. Krogstad and W. van de Water, Phys. Fluids 14:1288 (2002).

    Article  ADS  Google Scholar 

  20. A. Praskovsky and S. Oncley, Fluid Dyn. Res. 21:331 (1997).

    Article  Google Scholar 

  21. K. R. Sreenivasan, Phys. Fluids 27:1048 (1984).

    Article  ADS  Google Scholar 

  22. K. R. Sreenivasan, R. A. Antonia and D. Britz, J. Fluid Mech. 94:745 (1979).

    Article  ADS  Google Scholar 

  23. K. R. Sreenivasan and A. Bershadskii, J. Fluid Mech. (in print) 2005.

  24. K. R. Sreenivasan and B. Dhruva, Prog. Theor. Phys. Suppl. 130:103 (1998).

    ADS  MathSciNet  Google Scholar 

  25. K. R. Sreenivasan, A. Prabhu and R. Narasimha, J. Fluid. Mech. 137:251 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS: 47.27.-i, 47.27.Gs, 47.27.Nz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenivasan, K.R., Bershadskii, A. Clustering Properties in Turbulent Signals. J Stat Phys 125, 1141–1153 (2006). https://doi.org/10.1007/s10955-006-9112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9112-0

Keywords

Navigation